SHORELINE MANAGEMENT GUIDELINES

Karsten Maengor, Nils K. Drønen, Kasper H. Kærgaard and Sten E. Kristensen
SHORELINE MANAGEMENT GUIDELINES

Published by DHI, February 2017

Authors:
Karsten Mangor, Nils K. Drønen, Kasper H. Kærgaard and Sten E. Kristensen, DHI with contributions from Per Sørensen, Danish Coastal Authority and Aart Kroon, Geographical Institute, University of Copenhagen

Prepared under the research project COADAPT:
Danish Coasts and Climate Adaptation – Flooding Risk and Coastal Protection

COADAPT is executed in collaboration between DHI, The Danish Coastal Authority (DCA) and The University of Copenhagen (KU)

COADAPT is co-financed by:
Danish Council for Strategic Research
under
Danish Agency for Science, Innovation and Higher Education

Key Words:
Climate Adaptation
Coast Protection
Coastal Classification
Coastal Morphology
Numerical Modelling
Sea Defence
Shore Protection
Shoreline Management
Waterfront Developments
Preface

The Shoreline Management Guidelines is a basic handbook on coastal processes and shoreline management presented in common language providing a basic understanding for processes and shoreline management issues, however it is not a design manual for coastal protection. We have attempted to prepare a practical handbook suitable for all stakeholders working with or interested in coastal processes and shoreline management, such as private stakeholders, planners, authorities and engineers providing all parties with a common knowledge base.

The present handbook is the 4th edition of the Shoreline Management Guidelines, which was originally published in 2001. This revision supplements with issues related to effects of climate changes on the coast and how adaptation to these changes is handled in a sustainable and optimal way.

The PIANC publication: “Countries in Transition (CIT): Coastal Erosion Mitigation Guidelines, Report no 123 – 2014” was published in 2014 by a Working Group headed by Karsten Mangor. This publication was heavily inspired by the Shoreline Management Guidelines 2004 but also much new stuff was developed. The present update of the Shoreline Management Guidelines from 2004 is similarly heavily inspired by the PIANC Report no 123 – 2014 but again containing much new information.

The most important climate change parameter related to shoreline management is the expected Sea Level Rise (SLR) but changed pattern of storminess will also have an impact on the coasts.

The SLR has mainly two impacts along our coasts:

- Increasing risk of flooding of low lying coastal areas, which is catastrophic in nature because it may hit large areas with very short notice
- Increasing risk of coastal erosion. However, this will come gradually as the sea level rises

Shoreline Management Guidelines is prepared and published with support from the Danish Council for Strategic Research under Danish Agency for Science, Innovation and Higher Education as part of the outcome of the project COADAPT (Danish Coasts and Climate Adaptation – flooding risk and coastal protection).

Hørsholm, Denmark
February 2017
CONTENTS

1 **Background** 1
1.1 What are the problems - and how to address them 2
1.2 Some thoughts on Shoreline Management 3
1.3 How to read these guidelines 3

PART 1: Metocean Conditions, Coastal Processes and Coastal Classifications 5
2 **Introduction** 6
3 **Coastal Terms** 7
3.1 Definition of coastal terms 7
4 **Beach Materials** 14
4.1 Materials supplied by rivers 14
4.1.1 Fine, cohesive sediments 14
4.1.2 Non-cohesive sediments 15
4.1.3 Mixed supply of cohesive and non-cohesive material 16
4.2 Materials supplied by the erosion of the land masses due to wave, storm surge and wind action 17
4.3 Sources of sand for beach nourishment and beach fill 18
5 **Metocean and other Forcings of Importance for Shoreline Management** 19
5.1 Wind 19
5.2 Waves 25
5.3 Short waves 26
5.3.1 Wave generation 26
5.3.2 Wave transformation 28
5.3.3 Statistical description of wave parameters 37
5.3.4 Wave climate classification according to wind climate 47
5.4 Long waves 49
5.4.1 Surf beat 49
5.4.2 Harbour resonance 50
5.4.3 Seiche 50
5.4.4 Tsunami 50
5.5 Currents 52
5.5.1 Nearshore currents 53
5.6 Variations in water level 60
5.6.1 Astronomical tide 61
5.6.2 Seasonal variations 66
5.6.3 Non-regular variations 66
6 **Climate Changes** 70
6.1 Historical climate changes 70
6.2 Expected impacts due to climate changes 74
6.2.1 Impact of climate changes in coastal areas 75
6.3 Sea level rise due to climate changes 77
6.3.1 Examples of local practice 80
6.3.2 Concluding remarks 82
6.4 Impacts of climate changes in coastal areas 82
6.4.1 Coastal flooding 82
6.4.2 Shoreline retreat 85
6.4.3 Increased storminess 85
6.4.4 Ocean warming and acidification 85

7 Transport and Morphological Processes 86
7.1 General on sediment transport and other types of transport 86
7.2 Littoral transport 88
7.2.1 Variation of the littoral drift with forcing parameters 88
7.2.2 Littoral drift budget 90
7.3 Cross shore transport and equilibrium coastal profile 93
7.4 Transport conditions in tidal inlets 96
7.5 Mechanisms causing changes in shoreline position 97
7.6 Transport of fine suspended sediments 100
7.7 Transport and deposition of seaweed 102

8 Classification of Coastal Profiles 105
8.1 General about classification of coasts 105
8.2 Classification of coastal profiles 105
8.2.1 Exposed littoral dune or cliff coast 105
8.2.2 Moderately exposed littoral dune or cliff coast 106
8.2.3 Protected or marshy coast 107
8.2.4 Tidal flat coast 108
8.2.5 Monsoon coast or swell coast 110
8.2.6 Muddy coast with mangrove vegetation 111
8.2.7 Coral coast 111

9 Classification of Coastlines 117
9.1 Nearly straight coastlines 117
9.2 Other coastal form elements 119
9.2.1 Deltas 120
9.2.2 Spits 121
9.2.3 Barrier islands and tidal inlets 121
9.2.4 Overwash fans 122
9.2.5 Tidal inlet 123
9.2.6 Lagoon/Coastal lagoon 123
9.2.7 Coastlines close to river mouths and to tidal inlets 124
9.2.8 Headland and bay beaches 124

PART 2: Guidelines 126

10 Introduction 127

11 Causes of Coastal Erosion and Coastal Flooding incl. Impact of Climate Changes 128
11.1 Natural causes of coastal erosion 130
11.1.1 Natural chronic erosion 130
11.1.2 Natural acute erosion 133
11.2 Human causes of coastal erosion 134
11.2.1 Coastal structures interfering actively with the littoral transport 134
11.2.2 Passive coastal protection structures 140
11.2.3 Major reclamation projects 141
11.2.4 Erosion of crescent-shaped bays 141
11.2.5 River reclamation works and sand mining in rivers 142
11.2.6 Sand and coral mining, and maintenance dredging 145
11.2.7 Wake from fast ferries, classified as acute erosion 145
11.2.8 Concluding remarks 146
11.3 Causes of flooding 147
11.3.1 Natural causes of flooding 147
11.3.2 Causes of flooding due to human activities 148

12 Vulnerability and Risk Classification for Erosion 150
12.1 Background 150
12.2 Vulnerability and risk classification, and proposed interventions 151

13 Vulnerability and Risk Classification for Flooding 153
13.1 Vulnerability and risk classification for flooding caused by storm surges 153
13.2 Tsunami warning 154

14 Planning Concepts in the Coastal Zone 158
14.1 General 158
14.2 Spatial planning 160
14.3 Sector planning – the national policy and strategy 161
14.3.1 Laws, acts and planning regulations 161
14.3.2 Control of adherence to sector legislation 162
14.4 Implementation of sustainable development 164
14.5 Coastal Zone Management 166
14.6 Shoreline Management 168
14.6.1 Shoreline Management Planning 169
14.6.2 Shoreline Master Planning 173
14.7 Climate Adaptation Plans 175
14.7.1 Background 175
14.7.2 Climate Adaptation Plans 176

15 Coastal Projects 177
15.1 Shoreline Management/Coastal Development Schemes 179
15.1.1 Shoreline Management Scheme 179
15.1.2 Coastal Development Scheme or Waterfront Development Scheme 179
15.1.3 Functionality of Shoreline Development – and Coastal Development Schemes 180
15.2 Coast Protection Scheme 182
15.3 Sea Defence Scheme 182
15.4 Public infrastructure, utility projects and industry projects 183
15.4.1 Port and harbour projects 183
15.4.2 Pipelines, cables and utility/industrial projects (intake/outfall) 185
15.4.3 Regulation of tidal inlet or river mouths 186
15.4.4 Fixed links: Bridges or tunnels 187

16 Design Philosophy including Adaptation to Climate Changes 188
16.1 General design considerations 188
16.2 Climate change considerations 189
16.3 Design philosophy and risk assessment for adaptation to sea level rise 190
16.4 Considerations about adaptation measures for climate changes 195

17 Shore Protection, Coast Protection and Sea Defence Methods with Special Emphasis on Coastal Adaptation to Climate Changes 197
17.1 General considerations 197
17.2 Requirements for sustainable solutions 198
17.3 Overview of types of coast protection, shore protection and sea defence 199
17.4 Coast protection 200

© by authors and DHI, February 2017
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.1</td>
<td>Seawall</td>
<td>200</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Revetment</td>
<td>203</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Emergency protection</td>
<td>209</td>
</tr>
<tr>
<td>17.4.4</td>
<td>Bulkhead</td>
<td>211</td>
</tr>
<tr>
<td>17.5</td>
<td>Mixed coast/shore protection by structures and beach fill</td>
<td>212</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Groynes</td>
<td>213</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Detached breakwaters</td>
<td>223</td>
</tr>
<tr>
<td>17.5.3</td>
<td>Headlands or modified breakwater</td>
<td>239</td>
</tr>
<tr>
<td>17.5.4</td>
<td>Perched beach</td>
<td>243</td>
</tr>
<tr>
<td>17.5.5</td>
<td>Cove and artificial pocket beach</td>
<td>244</td>
</tr>
<tr>
<td>17.6</td>
<td>Shore protection</td>
<td>246</td>
</tr>
<tr>
<td>17.6.1</td>
<td>Regulation of the coastal landscape</td>
<td>246</td>
</tr>
<tr>
<td>17.6.2</td>
<td>Nourishment</td>
<td>251</td>
</tr>
<tr>
<td>17.6.3</td>
<td>Beach de-watering or beach drain</td>
<td>263</td>
</tr>
<tr>
<td>17.7</td>
<td>Artificial beaches and beach parks</td>
<td>265</td>
</tr>
<tr>
<td>17.7.1</td>
<td>Artificial beach</td>
<td>265</td>
</tr>
<tr>
<td>17.7.2</td>
<td>Beach parks and beach reclamation</td>
<td>265</td>
</tr>
<tr>
<td>17.8</td>
<td>Land use restrictions</td>
<td>269</td>
</tr>
<tr>
<td>17.9</td>
<td>Sea defence</td>
<td>273</td>
</tr>
<tr>
<td>17.9.1</td>
<td>Dike</td>
<td>274</td>
</tr>
<tr>
<td>17.9.2</td>
<td>Artificial dune</td>
<td>275</td>
</tr>
<tr>
<td>17.9.3</td>
<td>Marsh/Mangrove platform restoration</td>
<td>277</td>
</tr>
<tr>
<td>17.10</td>
<td>A Summary of the applicability and the function of coastal protection and shore protection, and sea defence measures</td>
<td>280</td>
</tr>
<tr>
<td>18</td>
<td>Waterfront Development Schemes</td>
<td>283</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>18.2</td>
<td>The characteristics of natural landscape elements</td>
<td>284</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Characteristics of natural beaches</td>
<td>284</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Characteristics of natural lagoons</td>
<td>286</td>
</tr>
<tr>
<td>18.3</td>
<td>Design guidelines for artificial beaches</td>
<td>287</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Exposure to waves</td>
<td>287</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Minimum wave exposure</td>
<td>290</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Exposure in relation to tidal range</td>
<td>290</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Beach plan form</td>
<td>290</td>
</tr>
<tr>
<td>18.3.5</td>
<td>Beach profile form</td>
<td>291</td>
</tr>
<tr>
<td>18.3.6</td>
<td>Design level for coastal areas</td>
<td>291</td>
</tr>
<tr>
<td>18.3.7</td>
<td>Beach fill material</td>
<td>293</td>
</tr>
<tr>
<td>18.4</td>
<td>Design guidelines for artificial lagoons</td>
<td>295</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Lagoon mouth and channel sections</td>
<td>295</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Open water body</td>
<td>295</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Perimeters</td>
<td>296</td>
</tr>
<tr>
<td>18.5</td>
<td>Landscape elements of waterfront developments</td>
<td>297</td>
</tr>
<tr>
<td>18.6</td>
<td>An example of a successful beach park development</td>
<td>303</td>
</tr>
<tr>
<td>18.7</td>
<td>New concept for an offshore development scheme</td>
<td>305</td>
</tr>
<tr>
<td>18.8</td>
<td>Investigation methodology</td>
<td>306</td>
</tr>
<tr>
<td>18.8.1</td>
<td>General requirements</td>
<td>306</td>
</tr>
<tr>
<td>18.8.2</td>
<td>Hydraulic studies</td>
<td>306</td>
</tr>
<tr>
<td>18.9</td>
<td>Conclusions and recommendations</td>
<td>309</td>
</tr>
<tr>
<td>19</td>
<td>Environmental Impact Assessment (EIA) and Morphological Impact Assessment (MIA)</td>
<td>310</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction and background to EIA and MIA</td>
<td>310</td>
</tr>
<tr>
<td>19.2</td>
<td>General EIA procedures</td>
<td>311</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Type of marine projects requiring Environmental Impact Assessment</td>
<td>311</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>19.2.2 The concept of a full Environmental Impact Assessment</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>19.3 Morphological Impact Assessment</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>19.3.1 Interventions leading to morphological impact</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>19.3.2 Discussion of impacts from and mitigating measures for ports</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>19.3.3 Discussion of mitigation measures for tidal inlets</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>19.3.4 Mitigation measures for other actively occupying structures in the littoral zone</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>19.3.5 Mitigation measures for structures outside the littoral zone</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>19.3.6 Mitigation measures for soft interventions in the littoral zone</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>19.3.7 Mitigation measures for soft interventions off the littoral zone</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>19.3.8 Mitigation measures for interventions in rivers and in the hinterland</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td>19.3.9 Mitigation measures for the extraction of resources from the underground</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td>19.3.10 Mitigation measures for sea level rise</td>
<td>348</td>
<td></td>
</tr>
</tbody>
</table>

PART 3: Hydraulic Study Methodology as Support for Shoreline Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Data Collection and Field Investigations as Support for Shoreline Management</td>
<td>350</td>
</tr>
<tr>
<td>20.1 Collection of existing data</td>
<td>350</td>
</tr>
<tr>
<td>20.1.1 Listing of type of data and their relevance</td>
<td>350</td>
</tr>
<tr>
<td>20.2 Field investigations and surveys</td>
<td>356</td>
</tr>
<tr>
<td>20.2.1 Listing of type and scope of surveys and recordings and their relevance</td>
<td>356</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Numerical Models as Support for Shoreline Management</td>
<td>362</td>
</tr>
<tr>
<td>21.1 Numerical modelling principles</td>
<td>362</td>
</tr>
<tr>
<td>21.1.1 Introduction</td>
<td>362</td>
</tr>
<tr>
<td>21.1.2 The basic idea of numerical models</td>
<td>363</td>
</tr>
<tr>
<td>21.2 Model application in projects</td>
<td>373</td>
</tr>
<tr>
<td>21.2.1 Numerical modelling purpose</td>
<td>373</td>
</tr>
<tr>
<td>21.2.2 The user's background and training</td>
<td>376</td>
</tr>
<tr>
<td>21.3 Coastal processes – modelling a complex environment</td>
<td>376</td>
</tr>
<tr>
<td>21.4 Models for coastal processes</td>
<td>383</td>
</tr>
<tr>
<td>21.4.1 Hydrodynamic models</td>
<td>383</td>
</tr>
<tr>
<td>21.4.2 Phase averaged 2D area models</td>
<td>383</td>
</tr>
<tr>
<td>21.4.3 Waves</td>
<td>384</td>
</tr>
<tr>
<td>21.4.4 Currents and long waves</td>
<td>388</td>
</tr>
<tr>
<td>21.4.5 Coupling between waves and currents</td>
<td>393</td>
</tr>
<tr>
<td>21.4.6 Sediment transport models</td>
<td>398</td>
</tr>
<tr>
<td>21.4.7 Sediment transport processes modelling</td>
<td>398</td>
</tr>
<tr>
<td>21.4.8 Shoreline models</td>
<td>413</td>
</tr>
<tr>
<td>21.4.9 Profile models</td>
<td>428</td>
</tr>
<tr>
<td>21.4.10 Modelling coastal flooding</td>
<td>430</td>
</tr>
<tr>
<td>21.4.11 Modelling the sea-land boundary</td>
<td>431</td>
</tr>
<tr>
<td>21.4.12 Intrusion of sea water into the coastal hinterland</td>
<td>432</td>
</tr>
<tr>
<td>21.4.13 Modelling climate change impact on coasts</td>
<td>438</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Physical Modelling</td>
<td>440</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 References</td>
<td>442</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Index</td>
<td>449</td>
</tr>
</tbody>
</table>
1 Background

Coastal engineers, planners, administrators, private landowners and politicians should have a common basis as background for planning sustainable human activities along the coasts. In particular the following issues are important:

• coastal processes
• goals for management strategies
• management possibilities and solutions
• adaptation to climate changes

These subjects have been dealt with in numerous textbooks and scientific papers; however these media are not easily accessible to planners, decision-makers and other interested parties, as most of these publications are written and read mainly by researchers. Many of the textbooks are too scientific and too voluminous (and thus time-consuming) for non-specialists to access, and many of the papers are very specialised, either as regards scientific topic or geographical setting. Furthermore, they are published in conference proceedings and journals, which are not - and should not be - standard references for planners and decision-makers.

Most of the required knowledge is therefore only available to specialists. However, the authorities make decisions concerning shoreline management based on their understanding of the subject. Consequently it is the responsibility of scientists and engineers to communicate their knowledge to the public so that it is easily understood.

The recipients of this knowledge are:

• The landowners facing the problems, who often are the main contributor for financing coast protection schemes
• The authorities responsible for planning and approval of shoreline management schemes
• Consulting engineers, who are responsible for designing shoreline management schemes
• The decision-makers, public officers and politicians

Shoreline Management Guidelines aims to fill the gap between the professional coastal scientific community on one side and the above mentioned parties on the other. It offers a relatively short but scientifically correct guide to:

• coastal processes
• holistic management concepts
• environmentally sound shoreline management interventions
• coastal adaptation to climate changes
• up to date investigation methodology
1.1 What are the problems - and how to address them

The problem we face is the accelerating number of conflicts between development on the coast and coastal erosion/coastal flooding; these conflicts are further aggravated by the climate changes. The development pressure on land in combination with the progressing coastal erosion leads to requirements for coast protection, and in many cases subsequent deterioration of our shores. There are many reasons why most coastal regions throughout the world suffer from these problems despite the high level of coastal engineering and the science of coastal processes available today.

Many human activities deprive our shores of a natural supply of sand, such as river regulation works - often far away from the coast – and sand mining in rivers. In addition, the construction of harbours, inlet regulation jetties, maintenance dredging, hard coast protection works and the ongoing Sea Level Rise, all add to the problem. With less sand available our formerly natural and stable sandy beaches will suffer from erosion.

Lack of sustainable planning has, in many cases, permitted urbanisation and infrastructures too close to eroding coastlines, which has aggravated the consequences of chronic erosion. Nowadays, most countries have a legislation, which enforces restrictions on construction activities near the coastline and forces project developers to perform impact assessment studies for coastal projects and to implement remedial measures as part of the project if negative impacts are identified. In most cases there is also nature protection legislation, which promotes sustainable development through requirements to re-establishment of recreational beaches and requirements to preservation of natural beaches. The main problem is that there is normally no budget for fulfilling the requirements to re-establishment and preservation of the coastal resources (sandy beaches).

The climate changes are global problems, which will cause a general Sea Level Rise in the future and which will add to coastal erosion and flooding problems.

Many causes of past and present coastal erosion have a long history and a geographically complex background. It is evident that most of these causes cannot be removed within the scope of a typical coastal protection project.

The important elements when dealing with coastal erosion and beach restoration problems are:

1. To investigate the causes of the problem
2. To define the goals for the shoreline management project and to resolve conflicting interests. This phase can also be described as **definition and acceptance of the shoreline management strategy for the project area**
3. To define the financing of the project
4. To engage a qualified group of consultants to assist in achieving the goals of the agreed shoreline management strategy

Coastal engineers’ expertise lies especially within items one and four, but items two and three are just as relevant.

This means that:

- coastal engineers must improve their communication and management skills, and
- all other involved parties must improve their basic understanding of the coastal area and of the engineering possibilities

These Guidelines are intended to facilitate this process for the benefit of our valuable shores.
1.2 Some thoughts on Shoreline Management

There is always a delicate balance between the requirements of primary protection against coastal erosion on one hand and protection of the dynamic coastal landscape and sandy shores on the other hand.

Historically, protective measures have been reactive in nature and have concentrated on preventing loss due to coastal erosion. This type of protection has, throughout the world, resulted in loss of the beach and it has had a serious impact on the dynamic coastal landscape. Such protection measures are “coast protection”, not “shore protection”.

1.3 How to read these guidelines

These Guidelines are separated into three parts but the chapters are numbered continuously through the various parts:

• PART 1: Metocean Conditions, Coastal Processes and Coastal Classification, Chapters 2 through 9

• PART 2: Guidelines, Chapters 10 through 19

• PART 3: Hydraulic Study Methodology as Support for Shoreline Management, Chapters 20 through 22

• References and Index are presented in Chapters 23 and 24.

The purpose of Part 1 is to give the reader a basic understanding of the metocean forces acting on the coast and the coastal processes resulting from these forces and how these processes results in coastal changes. Part 1 is opened with a definition of coastal terms to ensure common understanding and meaningful communication and Part 1 is terminated by coastal classification, which is a very useful concept to summarise the status of a coastal section. Part 1 is mainly intended for the interested, non-specialist reader who wants a better understanding of what is happening and why and for the engineer who is venturing into an unfamiliar area and wants an introduction to the subject. The focus is therefore not on the theoretical and numerical side of issues, but on provision of a general understanding of the coastal processes. Practically only very few equations are included in order not to exclude non-scientists from understanding the text. Part 1 should be read from start to finish at least once and can then later be used to look up specific topics or words.

The experienced coastal engineer can skip Part 1 and go directly to Part 2, which contains sections on the following subjects:

• Causes of coastal erosion and coastal flooding including impact of climate changes

• Vulnerability and risk classification for erosion

• Vulnerability and risk classification for coastal flooding

• Planning concepts in the coastal zone

• Coastal projects

• Design philosophy including adaptation to climate changes

• Shore protection, coast protection and sea defence methods with special emphasis on coastal adaptation to climate changes
• Water front development schemes

• Environmental Impact assessment and Morphological Impact Assessment

Part 2 will assist the reader, whether an engineer or a planner, in formulating a suitable strategy for the problem at hand and in selecting realistic solutions. This part can be read from start to finish or used as a reference book.

Part 3 provides guidance in study methodology as support for shoreline management projects divided in data collection and field investigations, numerical modelling and physical modelling

Chapter 23 presents a list of references common for all chapters. In order to make the Guidelines easier to read there are only few references in the text. Chapter 24 presents a subject index.

Results from numerical modelling have been used throughout this book to illustrate coastal processes. The DHI software “MIKE Powered by DHI” has been applied to make these illustrations.