Water and carbon modeling of the land surface using remote sensing from Satellites and UAV

Monica Garcia
Assistant Professor
(coauthors at the end)

DTU Environment
Department of Environmental Engineering
Warmer and extreme climate + Growing population

Impacts on water resources, food production and natural ecosystems

Flows of water and carbon between the land and the atmosphere are linked

Uncertainty in our knowledge of water responses is directly dependent on uncertainty of carbon responses
Evapotranspiration (ET) estimates

- **(traditional) water balance**
 \[
 \frac{dS}{dt} = P - \underbrace{ET}_{\text{ET in energy units}} - Q
 \]

 P is rainfall, Q is runoff and dS change in storage.

- **(remote sensing) energy balance**
 \[
 Rn - G = H + \lambda ET
 \]

 Rn is net radiation, G is soil heat flux, H is sensible heat flux and λET is latent heat flux.

INPUT

- Meteorological data
- Land parameterization (soil depth, land cover type)
- Radiometric Temp.
- Albedo
- Vegetation indices
- Air temperature
- Radiation
Remote sensing: spectroscopy

Solar range (0.4-2.4 µm)

Thermal range (5-12 µm)

\[NDVI = \frac{(R_{800} - R_{670})}{(R_{800} + R_{670})} \]

Eric Brown de Colstoun

Gillespie, 2014
Relation between spectral indices and plant physiology: much less explored

Annual precipitation: 370mm

Correlations between canopy spectral indices and leaf physiology?

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Spectral index (bands)</th>
<th>Photosynthesis (μmol CO₂ m⁻² s⁻¹)</th>
<th>Light Use Efficiency (g C MJ⁻¹)</th>
<th>Transpiration (mm/s)</th>
<th>Conductance (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green vegetation (LAI, fPAR)</td>
<td>Normalized Difference Vegetation Index NDVI (800, 670)</td>
<td>0.65</td>
<td>0.56</td>
<td>0.48</td>
<td>0.07</td>
</tr>
<tr>
<td>Canopy water content</td>
<td>Normalized Difference Water Index NDWI (860, 1240)</td>
<td>0.86*</td>
<td>0.66</td>
<td>0.87*</td>
<td>0.30</td>
</tr>
<tr>
<td>Xanthophyll cycle</td>
<td>Photochemical Reflectance Index PRI (570, 531)</td>
<td>0.12</td>
<td>0.28</td>
<td>-0.42</td>
<td>-0.94**</td>
</tr>
<tr>
<td>Chlorophyll content</td>
<td>(750, R710)</td>
<td>0.95**</td>
<td>0.88*</td>
<td>0.68</td>
<td>-0.09</td>
</tr>
<tr>
<td>Carotenoids content</td>
<td>(800, 470)</td>
<td>0.96**</td>
<td>0.84*</td>
<td>0.81</td>
<td>0.09</td>
</tr>
<tr>
<td>Water stress</td>
<td>Tcanopy – Tair (thermal)</td>
<td>-0.90*</td>
<td>-0.83</td>
<td>0.88*</td>
<td>-0.64</td>
</tr>
<tr>
<td>Water stress</td>
<td>Tsol – Tcanopy (thermal)</td>
<td>-0.93*</td>
<td>-0.83</td>
<td>0.93*</td>
<td>-0.80</td>
</tr>
</tbody>
</table>

*p<0.05, p<0.01
Agricultural Water Innovations in the Tropics (AgWIT)

Motivation: Water and carbon footprints of tropical crops exported to EU

Increase crop water use efficiency

Testing new strategies

Biochar additions under rainfall and rainfed crops. Agricultural impacts on water resources?

Evaluate soil and water management strategies via ecophysiological assessments of crops and quality of soil leachate
Prototype Global ET based on Sentinel-3

✓ Four different **operational** approaches tested and merged
✓ Minimum climatic inputs and optimization with field datasets

Average annual ET (mm) condition from 2009 to 2012

Mallick et al., 2015
\(\lambda E_{PT-JPL} \) evapotranspiration model

- Neglects behavior of individual leaves -> canopy bulk response
- Best among 4 global models. Deficiencies during conditions of water stress (Miralles et al., 2016).

Net radiation (Rn) partitioned based on vegetation cover

(Beer Lambert law)

Canopy: \(c \)

Bare soil: \(s \)

\(\lambda E_c = f_g \cdot f_T \cdot f_M \cdot \lambda E_{c\text{-potential}} \)

\(\lambda E_s = f_{SM} \cdot \lambda E_{s\text{-potential}} \)

Solves evapotranspiration \(\lambda E \)

Plant constraints limiting transpiration

Soil moisture constraint limiting evaporation
Proof of concept: Effect of soil moisture estimates into ET_{PT-JPL} algorithm under extreme conditions (mean ET< 1 mm/day)

- Soil moisture controls stomatal and soil conductance to vapor.

Complementary hypothesis:
land-atmospheric coupling. Meteo data

Thermal inertia
LST, albedo from Meteosat SEVIRI

Field measured soil moisture (TDR)

\[RH^{VPD/\beta} \]

- \(R^2 = 0.17 \)
- \(R^2 = 0.63 \)
- \(R^2 = 0.75 \)

Flux tower: 20% uncertainty (black dots)

Garcia et al. (2013)
ET\textsubscript{PT-JPL} evapotranspiration model

✓ Proof of concept: ET\textsubscript{PT-JPL} algorithm at extreme environment Sahel

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>n</th>
<th>MAE</th>
<th>bias</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD16</td>
<td>488</td>
<td>27.11</td>
<td>-15.39</td>
<td>0.70</td>
</tr>
<tr>
<td>PT-JPL</td>
<td>276</td>
<td>11.53</td>
<td>9.55</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Garcia et al., in prep.
Wetland degradation? Water use from crops and ecosystems

Doñana Natural Area: Biosphere Reserve

Morris et al., 2013

Temporal trends in evapotranspiration

☑️ Quantified an increasing trend in water use in new berry fields and decreasing in wetland: Hotspots

Moyano et al., in prep
ET_{TSEB} evapotranspiration model

Assumption: flux gradient theory for calculating sensible heat flux based on radiometric temperature for soil and for vegetation.

Net radiation (Rn) partitioned based on vegetation cover

(Beer Lambert law)

Canopy: \(c \)

Bare soil: \(s \)

\[
H_c = \rho C_p \frac{T_c - T_a}{r_{AH}} \\
H_s = \rho C_p \frac{T_s - T_a}{r_{AH} + r_s}
\]

\(\lambda E_c = Rn_c - H_c \)

\(\lambda E_s = Rn_s - H_s - G \)

Solves Sensible heat flux \(H \)

Canopy radiometric temperature

Soil radiometric temperature

Morillas et al., RSE 2013
ET\textsubscript{TSEB} evapotranspiration model

Motivation

- Test the model in dryland sparse vegetation conditions (series and parallel)
- Evaluate the algorithm to separate temperature into soil and vegetation

\[T_R = \left[f_c T_c^4 + (1 - f_c) T_s^4 \right]^{1/4} \]

Temperature Unmixing

Numerical approach

\[T_R (\text{composite}) \]

\[T_c (\text{vegetation}) \quad T_s (\text{soil}) \]

Input of separate temperatures

<table>
<thead>
<tr>
<th>Variable</th>
<th>H</th>
<th>λE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.75-0.80</td>
<td>0.36-0.39</td>
</tr>
<tr>
<td>MAPE%</td>
<td>25-33</td>
<td>74-95</td>
</tr>
</tbody>
</table>

Robust procedure: minor differences in outputs
ET_{TSEB} evapotranspiration model

Accurately quantifying interaction in drylands of soil and vegetation in partially or sparsed vegetated areas remains challenging (Haghighi et al 2017, WRR).

Sensible heat

Latent heat

TSEB standard algorithm
MODIS LAI

TSEB standard algorithm
LAI from field

TSEB with modified aerodynamic resistances

Kustas et al., 2016
Gross Primary production (GPP) model

- Atmospheric CO₂ absorbed by terrestrial ecosystems through photosynthesis.
 - Largest carbon flux between land and atmosphere.
- Light use efficiency concept is based on **Functional convergence theory**: "Plants scale canopy leaf area and light harvesting by the availability of resources as a result of evolutionary processes in order to optimize their carbon fixation"
 (Field et al., 1991; Goetz & Prince, 1999)

\[
GPP = \varepsilon f_{\text{PAR}} \cdot PAR
\]

Max light use efficiency

\[
GPP = \varepsilon_{\text{max}} f_{\text{VPD}} \cdot f_T \cdot f_{\text{SM}} \cdot f_{\text{PAR}} \cdot PAR
\]

Biophysical constraints limiting transpiration and assimilation

Monteith et al., (1977)
Model development and testing

Motivation
- Remote sensing based models of evapotranspiration and gross primary productivity biased to clear sky conditions
- Include and quantify effect of diffuse radiation (Clouds, aerosols)
- Assume the biophysical constraints for evapotranspiration same as for GPP

Sorø flux site
11 years of data!

Wang, et al., 2017, AFM.
Light use efficiency model used to understand effects of diffuse radiation

- Model including effects of diffuse and direct radiation improved estimates

- Data Driven Path analysis Quantify effect of diffuse radiation

- Model Global sensitivity analysis

- Higher Water Use Efficiency with cloudy conditions

- Warming effect from clouds increasing canopy temperature (Ts) (NDVI>0.75)

Wang, et al., 2017, AFM.
DTU high resolution mapping system for ET and GPP

Motivation:

✓ Operational estimates of daily GPP and ET from UAV
✓ Needed for detailed (submeter) water and carbon footprints, crop yields, biomass, water resources.

Model inputs:
- Imaging processing Orthorectification and correction
- UAS orthophotos (hyper-spatial resolution cm level)
- Vegetation indices
- Radiation budget
- Soil moisture
- Humidity
- Tair

Risø willow flux site
25- May-2016

Sheng et al, 2016
Soil moisture using thermal UAV data: TVDI

Liu et al., in prep.

Challenge: geometric and accurate radiometric corrections: <2 K and < 20 cm

Soil moisture index

Portable TDR: soil moisture

Risø willow site
UAS imagery validation

- MCA reflectance validation (ASD)

Four colors of tarpaulins

Hyperspatial mapping of water, energy and carbon fluxes with Unmanned Aerial Vehicles
Payload: calibrations of multispectral camera

Low illumination conditions.

- Geometric calibration: retrieve intrinsic camera geometric parameters

 To improve the accuracy of image mosaicking

- Vignetting correction: homogenous illumination from the sphere

 To reduce the radiometric distortion

- Radiometric calibration: Converting digital number (DN) to radiance (L)

 Extended calibration for low illumination conditions (exposure time):
Payload: the thermal infrared camera

Flir Tau 324 (7.5-13.5 µm)
- To retrieve the **land surface temperature**
- Pixel wise calibration with a black body (emissivity = 1)

![Example of corrected temperature orthophoto](image)
- Place: Risø willow flux site, DK
- Time: 25-May-2016 11:15 a.m.
- Flying altitude: 80m

The accuracy of pixel-wise calibration for each pixel (RMSE and bias)

Correction for the surface emissivity and the atmospheric effects

\[
L_2(\theta) = \tau_2(\theta) \left[\varepsilon_2 B_2(LST) + (1 - \varepsilon_2) \frac{L^{\uparrow}_2}{\pi} \right] + L^{\uparrow}_2(\theta)
\]

- Atmospheric transmisivity (H₂O+other gases)
- Emitted radiance by the surface
- Atmospheric irradiance (downwelling path) reflected by the surface
- Atmospheric irradiance (Upwelling path)
How to interpolate ET and GPP between flights?

Motivation:

- Operational Model ET and GPP between flights: “Smart interpolator”
- Soil-vegetation-atmosphere transfer (SVAT) model: exchanges of energy, water vapor, and momentum across soil-vegetation-atmosphere continuum.
Dynamic model of ET and GPP between observations

At Soroe beech forest

- Longwave outgoing radiation
- Latent heat flux
- Soil moisture
- Gross Primary Productivity
Summary

- **Land surface process are linked**: we cannot understand and predict the hydrological cycle components in isolation but in relation to other land surface processes related with the energy and carbon cycles.

- **Different types of remote sensing data** provide information on the reflectance and emission of light in different wavelengths useful to estimate energy budgets and vegetation status.

- “**Top down**” models of evapotranspiration and GPP can incorporate remote sensing data with minimal calibrations or parameterization. Challenges in drylands with no irrigation.

- **UAV platforms are flexible** and provide very high spatial/spectral resolution. The challenge is to provide consistent time series of state variables.

- **To account for gaps between remote sensing acquisitions** (cloud cover, revisiting time) we propose to use simple Soil Vegetation Atmosphere Transfer Scheme forced with climatic data.
Coauthors

Sheng Wang DTU-Environment
Peter Bauer-Gottwein DTU-Environment
Daniel Olesen DTU-Space
Filippo Bandini DTU-Environment
Jakob Jakobsen DTU-Space
Laura Morillas Univ. of British Columbia
Carmen Moyano U.P. Madrid
Josh Fisher Jet Propulsion Laboratory, NASA
Sergio Vicente-Serrano CSIC, Spain
Kaniska Mallick Luxembourg Institute of Science and Technology.
Pietro Ceccato Columbia University, IRI.
Mark Johnson Univ. of British Columbia
PIs of the flux sites F. Domingo, E. Mougin, J. Ardo, A. Ibrom, K. Pilegaard.