Evaluating the spatial performance of hydrological models using remote sensing data

Gorka Mendiguren, Julian Koch and Simon Stisen
(gmgo@env.dtu.dk)

New opportunities in satellite and airborne remote sensing
Monday 11 December 2017

Geological Survey of Denmark and Greenland
Danish Ministry of Climate, Energy and Building
Outline of the presentation

- Introduction
- Methods
- Results
- Conclusions

http://visibleearth.nasa.gov/view.php?id=71880
Evaluating the spatial performance of hydrological models using remote sensing data

Why is it important?

Hydrological model outputs are used by decision makers.

There is a need to evaluate the spatial patterns to make them reliable.
Evaluating the spatial performance of hydrological models using remote sensing data

Why is it important?

Hydrological model outputs are used by decision makers.

Status

Traditional calibration techniques neglect the spatial component by being calibrated at discharge stations.
Evaluating the spatial performance of hydrological models using remote sensing data

Why is it important?

Hydrological model outputs are used by decision makers.

Status

Traditional calibration techniques neglect the spatial component by being calibrated at discharge stations.

Our experience

We compared evapotranspiration outputs from the National Research Model of Denmark (DK-model) with evapotranspiration obtained from MODIS.
Evaluating the spatial performance of hydrological models using remote sensing data

Why is it important?
Hydrological model outputs are used by decision makers.

Status
Traditional calibration techniques neglect the spatial component by being calibrated at discharge stations.

Our experience
We compared evapotranspiration outputs from the National Research Model of Denmark (DK-model) with evapotranspiration obtained from MODIS

Our main hypothesis
Evapotranspiration patterns obtained using both methods should be similar.
If not, can we make them more similar?
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modify DK model inputs
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modify DK model inputs
Methods

What is the Dk-model?

Is the National water resources model of Denmark and is distributed, coupled Ground Water-Surface Water model. Includes unsaturated zone, ET, river routing modules and runs on MIKE-SHE at 500m.
Methods

- **What is the Dk-model?**

 Is the National water resources model of Denmark and is distributed, coupled Ground Water-Surface Water model. Includes unsaturated zone, ET, river routing modules and runs on MIKE-SHE at 500m.

- **How is the model calibrated?**

 Calibrated and validated against 191 discharge and around 17500 ground water head observations.

(Taken from Stisen et al. 2012)
Methods

Is the National water resources model of Denmark and is distributed, coupled Ground Water-Surface Water model. Includes unsaturated zone, ET, river routing modules and runs on MIKE-SHE at 500m.

Calibrated and validated against 191 discharge and around 17500 ground water head observations.

Different applications:
- Assessment of climatic change
- Water resources management within the EU Water framework directive
- Large scale nitrogen modeling

(Taken from Stisen et al. 2012)
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modify DK model inputs
Methods

Remote sensing provides high spatial and temporal data of the earth surface. There are long time series of data records. ET models have been developed and been validated.
Methods

Why satellite?
Remote sensing provides high spatial and temporal data of the earth surface. There are long time series of data records. ET models have been developed and been validated.

What model was used?
The Two Source Energy Balance from Norman et al. 1995 was used to calculate the ET. (https://github.com/hectornieto/pyTSEB)
Methods

ET from DK-model

Why satellite?

Remote sensing provides high spatial and temporal data of the earth surface. There are long time series of data records. ET models have been developed and been validated.

ET from Satellite

What model was used?

The Two Source Energy Balance from Norman et al. 1995 was used to calculate the ET. (https://github.com/hectornieto/pyTSEB)

ET pattern evaluation

Sensitivity analysis

A sensitivity analysis was conducted with PEST to evaluate the most sensitive parameters in the model.

Modify DK model inputs
Methods

Remote sensing provides high spatial and temporal data of the earth surface. There are long time series of data records. ET models have been developed and been validated.

The Two Source Energy Balance from Norman et al. 1995 was used to calculate the ET. (https://github.com/hectornieto/pyTSEB)

A sensitivity analysis was conducted with PEST to evaluate the most sensitive parameters in the model.

Data from HOBE from 3 eddy covariance sites was used to ensure quality of the data.
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modified DK model inputs
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modified DK model inputs
- Map generation
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modified DK model inputs
- Map generation
- Visual interpretation
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modified DK model inputs
- Map generation
- Visual interpretation
- Scatterplots (r)

Results - Visual Interpretation

Results - Scatter plots (Pearson)
Methods

- ET from DK-model
- ET from Satellite
- ET pattern evaluation
- Modified DK model inputs
- Map generation
- Visual interpretation
- Scatterplots (r)
- Empirical Orthogonal Functions (EOF)
Methods

Root depth, LAI and Kc changes in time and space based on the land cover type in the Dk-Model
Methods

Root depth and Kc changes in time and space based on the land cover type in the Dk-Model
Methods

Root depth and Kc changes in time and space based on the land cover type in the Dk-Model

New root depth maps based on NDVI and soil maps were created.

\[
RD_i[m] = RD_{\text{max}} \frac{\text{NDVI}_i}{\text{NDVI}_{\text{max}}} \quad \text{for forested areas,}
\]

and

\[
RD_{\text{agri}}[m] = \left((\alpha \cdot CF_i) + \beta \right) \cdot \frac{\text{NDVI}_i - \text{NDVI}_{\text{min}}}{\text{NDVI}_{\text{max}} - \text{NDVI}_{\text{min}}}
\]

Kc is derived from remotely sensed LAI using:

\[
Kc[-] = Kc_{c,\text{min}} + (Kc_{c,\text{max}} - Kc_{c,\text{min}}) \cdot (1 - e^{(-0.7 \cdot \text{LAI})}) = 0.95 + 0.2 \cdot (1 - e^{(-0.7 \cdot \text{LAI})})
\]

Where the Kc_{\text{min}} and Kc_{\text{max}} are set to 0.95 and 1.15 respectively.
Results - TSEB ET
Results- DK model ET
Results- Modified DK model ET

Maps showing evapotranspiration for different months from April to September.
Results - Modified DK model ET

Evapotranspiration modified DK-Model

- 1.3
- 1.2 - 1.3
- 1.1 - 1.2
- 1 - 1.1
- 0.9 - 1
- 0.8 - 0.9
- 0.7 - 0.8
- 0.6 - 0.7
- 0.5 - 0.6
- <0.5
Results
Results
Results-EOF

EOF1 - 45.2% explained variance
EOF2 - 15.7% explained variance
EOF3 - 9.86% explained variance

EOF Loadings

Modified DK-Model
Original DK-Model
Results - Ground water heads and discharge

Mean error pr. well [m] vs % Stations

- Original DK Model (Calibration)
- Modified DK Model (Validation)

Mean = -0.437 Median = -0.999 RMSE = 5.47
Mean = -0.361 Median = -0.925 RMSE = 5.50
Can a hydrological model be calibrated spatially?

Figure 3. Average hydrograph of all years in the calibration period (2001-2008) to illustrate the ensemble of nine model calibrations with different seed numbers.

Conclusions and future perspectives

• The potential of remote sensing to evaluate the spatial patterns of hydrological models has been shown.

• Remote sensing derived variables added spatial information to the model and made the spatial patterns of both models more similar.

• The Dk-model was not recalibrated. We expect the validation with the discharge stations and ground water heads to improve when done.
Thank you for your attention!

Questions?

Results