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Methods for improving the hydrological simulation through the use of multi-model 

ensembles (MME) are demonstrated. In recent years, the meteorological community has 

exploited several MME combination techniques as a means for improving short-term 

weather and seasonal climate forecasts.  Within the hydrological community, little work 

has been carried out to explore the benefits of MMEs for streamflow simulations. This 

study examines the use of MMEs for improving streamflow simulation, including their 

potential benefits to flood simulation. Multimodel ensembles are generated using ten 

distinct model structures derived using a new hydrological modelling tool. These model 

structures were applied to a US NWS test catchment, the Blue River and evaluated using 

a split-sample procedure. The resulting ensemble can be used to make probabilistic 

simulations that characterise model structure uncertainty. Furthermore it is shown that 

the ensemble average of all 10 models performs better than any single model in split 

sample test. Using regression methods, improvements in ensemble simulations using 

linear combinations of the ensemble members were explored. The performance of the 

resulting weighted ensemble is similar to the simple ensemble average but uses a smaller 

ensemble. This may provide a means to identify which model structures provide 

significant contributions to accurate hydrological simulation. 

 

INTRODUCTION 

 

Any evaluation of the accuracy of deterministic hydrological models for hydrological 

simulations and forecasting must address four sources of uncertainty. They are the 

random or systematic errors in the model inputs or boundary condition data, random or 

systematic errors in the recorded output data, uncertainty due to sub-optimal parameter 

values and errors due to incomplete or biased model structure. A critical choice in 

applying mathematical models to hydrological problems is the selection of model 

structure. Selecting an appropriate model structure encompasses determining the most 

significant hydrological processes to be described and the mathematical description of 

these processes. 

While the selection of model structure is crucial in determining the reliability and 

accuracy of the resulting model very few studies have examined the impact of model 

structure uncertainty in the context of simulation uncertainty. In most practical 

engineering problems, hydrologists attempt to identify the important processes and select 

a model system accordingly. Once this selection is made, further efforts to examine the 

impact of adopting different model structures are seldom made. Instead emphasis is 
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usually placed on evaluating the impact of parametric uncertainty. Very few studies have 

examined in a systematic way the significance of model structure uncertainty in relation 

to the other sources of uncertainty. However some recent studies (Georgakakos et al. [5], 

Butts et al. [2]) suggest that model structure uncertainty is at least as important as the 

parametric uncertainty.  

The essential difficulty for hydrological practitioners is that most current modelling 

tools provide very limited options for exploring different model structures. The 

alternative of applying a number of different models is impractical in many cases. 

Furthermore there is a need to match the model structure to the level of complexity to the 

particular application, the available data sources and the accuracy requirements. To 

address these requirements a new hydrological modelling tool has been developed, Butts 

et al. [2]. The idea behind this tool is to allow the modeller to select which processes 

require modelling, the level of conceptualisation, the degree of lumping and hence the 

level of complexity that is necessary for a particular application. The tool provides a 

process-based description of the rainfall-runoff and channel routing based on the MIKE 

SHE and MIKE 11 hydrological modelling concepts. However the MIKE SHE modelling 

paradigm of Freeze and Harlan [3] is extended to include lumped and conceptual 

descriptions to supplement the original distributed physics-based flow equations, Butts et 

al. [2].  

In this paper this tool is used to develop multimodel ensembles and to examine the 

potential benefits of applying ensemble-based simulations for hydrological applications 

and forecasting. Meteorologists have applied ensemble modelling using a number of 

different models or model structures to both long-term predictions (e.g. WMO [8]) and 

short-term operational forecasts (Krishnamurti et al. [6]). Ensemble modelling can also 

be used to provide probabilistic simulations from deterministic models that can be used in 

an evaluation of the variability or uncertainty in their predictions. In the hydrological 

community ensemble flow forecasting has focussed on investigating the effect of 

parametric and input error using several realisations from single models, Beven and Freer 

[1], Georgakakos [4]. However few systematic studies of the impact of model structure 

uncertainty on simulation uncertainty have been carried out. Furthermore there is a need 

within hydrological modelling to examine the benefit of using ensemble averages to 

provide consensus forecasts and to improve simulation accuracy. 

 

STUDY AREA 

 

The study area used here is one of the test basins within the Distributed Modeling 

Intercomparison Project (DMIP) organised by the Hydrology Lab of the National 

Weather Service (NWS). The purpose of the DMIP study was to evaluate the capabilities 

of existing distributed models and identify avenues for model improvements, 

http://www.nws.noaa.gov/oh/hrl/dmip/. We have chosen here to focus on the 1232 km
2
 

Blue river basin in Oklahoma, Figure 1. It is of interest for distributed hydrological 
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modelling because of its unusual aspect ratio, soil variability and the availability of 

distributed radar-based rainfall. 

 

 

Figure 1. Spatial discretization used in this study for the Blue River basin. The figure on 

the left shows the 8 subcatchments used in conceptual modelling and the parameter 

regions used for calibration. The figure on the right shows the 4-km NEXRAD grid used 

for the grid-based modelling. 

 

The Blue river basin is located in south-central Oklahoma and flows into the Red 

River at the Texas-Oklahoma border. The watershed is semi-arid, with significant 

convective rainfall events. Distributed rainfall data is available in the form of NEXRAD 

gridded data provided at hourly intervals at a spatial resolution of 4 km by 4 km. The new 

modelling tool was used, firstly to test the performance of the different model structures 

and secondly to evaluate the model structure uncertainty compared to other sources of 

uncertainty, Butts et al. [2]. To this end 10 different model structures were identified as 

plausible model structures. The different model structures included both lumped and 

distributed routing, lumped, subcatchment-based and distributed rainfall-runoff models, 

grid-based modelling using physics-based flow equations, different conceptual process 

descriptions and lumped, subcatchment-based and gridded radar-rainfall input, Table 1. 

To evaluate their performance each model structure was fitted to data in the 

calibration period and then evaluated against measurements in the validation period. Each 

model structure was fitted to the calibration period using automatic parameter estimations 

based on the Shuffled Complex Evolution and multiple objectives. (Madsen [7], Butts et 

al, [2]). The average error and RMSE were used as the calibration objectives. The split 

sample testing approach used here can then be used as a means of selecting the best 

model structure for the purpose – in this case flood forecasting. 
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Figure 2. Examples of the model structure ensemble (gray lines) and the estimated 

measurement uncertainty (error bars) for two major peaks, one in the calibration period 

and one in the validation period. 

 

Table 1. Short description of model structures used in this study.  

 

ID Short Name Description 

s1 Lumped Completely lumped using the MIKE 11 NAM model 

s2 Distributed routing 
Completely lumped with fully dynamic distributed 

routing, using the MIKE 11 NAM model concept. 

s3 Muskingum 
Sub-basin distributed rainfall with Muskingum-Cunge 

routing, using the MIKE 11 NAM model concept. 

s4 Distributed rainfall 
Sub-basin distributed rainfall with fully dynamic 

routing, using the MIKE 11 NAM model concept. 

s5 3 regions 

Sub-basin distributed rainfall with fully dynamic 

routing, with 3 independent parameter regions, using 

the MIKE 11 NAM model concept. 

g1 Aggregated rainfall 
Sub-basin distributed rainfall using the fully distributed 

grid-based MIKE SHE model concept 

g2 Gridded rainfall 
4 km NEXRAD gridded rainfall using the grid-based 

fully distributed MIKE SHE model concept. 

g3 No drains Excluding drain flow in g1. 

g4 Linear reservoir 

Sub-basin distributed rainfall using the grid-based fully 

distributed MIKE SHE model concept for surface and 

unsaturated soil processes and a semi-distributed model 

conceptual model for the sub-surface processes. 

g5 Bypass infiltration 
A bypass conceptual model for rapid infiltration in the 

unsaturated zone used in g4. 
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MULTIMODEL ENSEMBLES 

The simulations using these calibrated model structures form an ensemble, albeit small, 

of model simulations. This ensemble can be viewed as a measure of the uncertainty 

arising from model structure. Figure 2 shows the ensemble simulations for two major 

peaks. Significant variability is observed amongst the different model structures even 

though they were calibrated on the same data to the same objectives. The purpose of this 

paper is to explore the use of the ensemble to improve hydrological simulations. The 

simplest approach is to use simple averages of the different models. Figure 3 shows the 

simulations made using two different model structures, denoted s3 & g1, (see table 1). 

Using a simple average of these two models apparently provides a much better simulation 

of the flood hydrograph. Taking this one step further and using a weighted linear 

combination of the two models, a further improvement in simulated hydrograph can be 

obtained. 

Figure 3 Simulated hydrograph and flow duration curves for a simple multimodel 

ensemble with two members, g1 and s3. 

 

It is also of interest to determine the ability of the hydrological model to represent 

the full range of flows occurring within the catchment. One way to examine this is to 

compare the flow duration curves predicted by the model with the measured flow 

duration curve, Figure 3. We found that while the performance of the s3 model is better 

than the g1 model structure in terms of the RMSE (see table 2.), the g1 model better 

captures the range of flows within the catchment. It appears that neither model is able to 

accurately represent the distribution of intermediate flows, (50 –150 m3/s). For the higher 

flows, which were the focus of the DMIP study, it appears that a much better 

representation of the distribution of flows is obtained using a weighted mean of the two 

model structures, Figure 3. 

From this simple analysis it appears that there is some potential for improving the 

accuracy of hydrological simulations using ensemble averages and linear combinations of 

model structures from an ensemble. It can be argued that different model structures 

represent different aspects of the flow hydrographs, such as the magnitude and width of 

the peak and the rising and falling limbs of the flood hydrograph. Combining these 
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different structures could be expected to improve the accuracy of hydrological 

simulations when compared to a single model structure. 

Figure 4 Performance (RMSE and correlation R) of simple averages of multi-model 

ensembles for the calibration period. 

 

Figure 5 Performance measures for the individual ensemble models and ensemble 

averages using different weighting schemes in the calibration and validation periods. 
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Table 2. Performance measures for the individual model structures. The shading indicates 

the best performance.  

 

 s1 s2 s3 s4 s5 g1 g2 g3 g4 g5 

RMSE (m
3
/s) 

Calibration 

16.1 11.8 11.2 11.7 10.8 12.9 13.1 14.0 16.5 14.5 

RMSE (m
3
/s) 

Validation 

15.4 14.4 12.7 13.3 13.5 12.5 12.4 13.8 16.7 14.7 

Correlation R 

Calibration 

0.90 0.92 0.93 0.92 0.93 0.91 0.91 0.91 0.84 0.78 

Correlation R 

Validation 

0.81 0.73 0.81 0.79 0.78 0.81 0.81 0.78 0.66 0.74 

 

Figure 4 shows the performance (RMSE and correlation R) of simple averages of 

different combinations of 2,3,4, … 10 models. It appears from this figure that for any 

number of ensemble members there exists combinations that perform better than the 

individual models. It was also found that the individual models that performed best in the 

calibration period did not necessarily perform best in the validation period, table 2. By 

contrast the 10-model ensemble average performs well in both the calibration and 

validation period, Figure 5.  

Since the simple average of the 10-model ensemble improves the accuracy of flow 

simulation, two interesting questions are raised. Firstly is there an ensemble consisting of 

a smaller number of members, that outperforms the individual models in both the 

calibration and validation period? Secondly it is possible to further improve the 

simulation accuracy by using a linear combination of the ensemble members? To answer 

these questions, linear combinations of the 10 ensemble members were investigated. 

Optimisation methods were used to find the “best” linear combination of model structures 

from the amongst the 10 model structures during the calibration period. The “optimised” 

ensemble time series were found using Marquardt-Levenberg optimization and penalty 

functions to ensure the weights lie within the selected range. Since only non-negative 

weights were permitted non-linear regression is required. Two cases were investigated, 

the first (Case 1.) assuming that the sum of the weights is equal to unity and the second 

(Case 2.) without this restriction. This second approach was evaluated as it expected that 

this might correct for any biases in the model structures. In both cases an ensemble of 7 

members was found which provided similar accuracy to the simple ensemble average of 

all 10 member during the validation period, Figure 5. 

 

CONCLUSIONS 

A new modelling framework is used to generate multimodel ensembles using different 

calibrated model structures. The resulting ensemble can be used to make probabilistic 

forecasts that characterise model structure uncertainty. The performances of different 

ensemble averages were evaluated using RMSE, correlation and flow duration curves. 

We found that a simple ensemble average of the 10 model structures used performs better 
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than any single model in the split sample test. One explanation for this is that different 

model structures better represent different parts of the catchment flow response to 

rainfall. This suggests that ensembles derived from different models provide an 

opportunity to improve hydrological simulation and forecasts that deserves further 

investigation. Using regression methods it was found that similar performance levels 

could be achieved with a subset of model structures which would reduce computation 

time in real-time applications. This could also provide a means to identify which model 

structures provide significant contributions to accurate hydrological simulation. 
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