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Abstract Much research has been spent in the last three decades in developing more effective and efficient

automatic calibration procedures and in demonstrating their applicability to hydrological problems. Several

problems have emerged when applying these procedures to calibration of conceptual rainfall–runoff and

groundwater (GW) models, such as computational time, large number of calibration parameters, parameter

identifiability, model response surface complexity, handling of multiple objectives and parameter equifinality. All

these are expected to be much more severe for more complex models, for which comprehensive calibration

studies have not so far been conducted. The scope of this paper is to investigate the performance of a global

and a local optimisation technique, respectively, the Shuffled Complex Evolution algorithm and the gradient-

based Gauss–Marquard–Levenberg algorithm, in calibration of physically based distributed models of different

complexity. The models considered are a steady-state GW model, a transient GW model and a fully integrated

model of the same catchment. The calibration is conducted in a multi-objective framework where two different

aspects of the model response, the simulated runoff and the groundwater elevation are aggregated and

simultaneously optimised. Different aggregated objective functions are used to give different weights to the

calibration criteria. The results of the calibration procedures are compared in terms of effectiveness and

efficiency and demonstrate the different performance of the methods. Moreover, a combination of the global and

local techniques is investigated as an attempt to exploit the advantages of both procedures, while overcoming

their drawbacks.

Keywords Distributed hydrological models; global and local optimisation methods; multi-objective calibration;

parameter estimation

Introduction and scope

Traditionally, calibration of hydrological models has been performed manually by trial-and-

error parameter adjustment. The process of manual calibration, however, requires a high

degree of expert knowledge of the model and the system and is characterized by subjectivity

in the strategy employed to adjust the parameter values, as well in the criteria (mainly visual)

used to judge the goodness-of-fit of the model simulation. Moreover, manual calibration is a

very tedious and time-consuming task (Boyle et al. 2000; Madsen et al. 2002). To overcome

these problems much research has been spent in the last three decades in developing more

effective and efficient automatic calibration procedures and in demonstrating their

applicability to hydrological problems. Nowadays manual calibration is often substituted or

supplemented by automatic procedures, which have found widespread use in hydrology. The

main advantages of automatic techniques are the speeding up of the calibration process, the

reduced subjectivity involved in the calibration procedure (for most of the techniques only
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the parameter range needs to be specified by the modeller) and the availability of generic

software that can be relatively easily linked to the model.

Automatic calibration procedures can be classified as either local or global search

strategies (Sorooshian and Gupta 1995), depending on the evolving pattern of the solutions,

i.e. the parameter sets. Local methods involve the estimate of a single parameter set

following deterministic rules. These procedures direct the search in the parameter space by

using only information on the objective function value (direct methods) or by including also

derivative information (gradient-based methods). Global methods involve a population of

solutions by using both deterministic and stochastic rules. Initially, the global procedures

broadly search the parameter space and subsequently gradually converge into the

subregion(s) containing the objective function’s optima. The first applications of automatic

calibration procedures to hydrological models were based on local, deterministic, gradient-

based methodologies (Dawdy and O’Donnell 1965; Nash and Sutcliffe 1970; Johnston and

Pilgrim 1976; Carrera and Neuman 1986). Since then, calibration procedures have evolved

significantly, resulting in the development of robust and effective global search procedures.

Among these, different population-evolution-based optimisation algorithms have

been applied in hydrology, such as Genetic Algorithms (Wang 1991), the Shuffled Complex

Evolution (SCE) algorithm (Duan et al. 1992), and the Simulated Annealing (Sumner

et al. 1997).

Despite the various automatic calibration techniques available, their application is limited

by computational constraints. In particular, the relationship between the computational

time required to run the model and the efficiency of the search algorithm, i.e. the number of

model runs required to calibrate the model, still remains one of the main constraints in the

choice of the calibration methodology for the particular problem at hand. Because of their

fast running time, lumped, conceptual rainfall–runoff (RR) models have been widely

employed to test new calibration methods (Duan et al. 1992; Gupta et al. 1998; Vrugt et al.

2003b) as well as to investigate the application of existing methodologies to hydrological

problems (Wang 1991; Franchini and Galeati 1997). They have also been used in several

comparative studies to investigate the performance of different calibration techniques,

mainly global methodologies (Gan and Biftu 1996; Cooper et al. 1997; Kuczera 1997;

Franchini et al. 1998; Thyer et al. 1999; Madsen et al. 2002; Marshall et al. 2004; Skahill and

Doherty 2006). Due to the higher computational cost of distributed groundwater (GW)

models, faster calibration methods, mainly local procedures, based on nonlinear regression

techniques, have been applied to these models (Carrera and Neumann 1986; Bentley 1993;

Poeter and Hill 1997; Christensen and Cooley 1999; D’Agnese et al. 1999). Only a few

studies have been conducted on GW models to compare the performance of different

calibration techniques (Heidari and Manjithan 1998; Solomatine et al. 1999; Shigidi and

Garcia 2003).

Compared to RR and GW models, fewer calibration attempts are reported for distributed

and integrated models, which couple groundwater and surface water processes (Eckhardt and

Arnold 2001; Madsen 2003; Mertens et al. 2004; Muleta and Nicklow 2005). There are

several reasons why hydrologists rarely tackle the problem of calibration of these more

complex models. One of these is the already mentioned concern about computational time,

which grows substantially for these types of models. Another reason is the huge number of

parameters to calibrate, due to the additional model complexity and the necessity to account

for the spatial distribution of the hydrological properties within the catchment. Unless a

proper procedure is applied to reduce the dimension of the problem, the higher

dimensionality of the parameter space increases dramatically the number of model runs

required by the calibration procedure. Moreover, the presence of parameter correlation and

interaction, often encountered in hydrological models, can be even worse for integrated,
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distributed models. This causes poor parameter identifiability, which might reduce the

performance of search algorithms, or, in the worst cases, make the search unsuccessful

(Duan et al. 1992; Poeter and Hill 1997; Kuczera 1997).

In addition, calibration of distributed, integrated models suffers from all the problems that

have been encountered so far in parameter estimation applications in hydrology. Among

these, the nature of the model response surface must be emphasised, which is characterized

by roughness, non-smoothness, discontinuous derivatives, several regions of attraction with

numerous local optima and a non-convex shape in the proximity of the optima. All these

features, which have emerged from several studies conducted on lumped, conceptual RR

models (Duan et al. 1992; Kuczera 1997; Skahill and Doherty 2006), are expected to be even

more severe for complex, distributed and integrated models, which are characterized by a

higher degree of non-linearity in the relationship between parameters and model responses.

Another feature of calibration of hydrological models is its intrinsic multi-objective

nature (Gupta et al. 1998; Madsen 2000, 2003); in fact, in many applications, it is necessary

to calibrate the model to more than one simulated response in order to obtain a

hydrologically sound model. In general, multiple variables (e.g. groundwater elevation and

river discharge), multiple response modes (e.g. in the case of river discharge, high flows, low

flows and overall water balance) and multiple sites data (e.g. runoff at different river

sections) may be included in the calibration process (Madsen 2003). This has the advantage

of improving the identifiability of the estimated parameters, if the selected objectives contain

new and independent information on the system (McLaughlin and Townley 1996; Gupta

et al. 1998; Kuczera and Mroczkowski 1998). The multi-objective problem can be reduced

to a single-objective problem by combining the targets to be optimised into an aggregated

objective function. This can easily be done, for example, through a weighted sum of the

different objective functions (Gupta et al. 1998), where the weights reflect the importance

given by the modeller to the various aspects of the system behaviour. Other less subjective

methods in aggregating different criteria have also been proposed, including the probability

weighted method by van Griensven and Bauwens (2003) and the common distance scale

method by Madsen (2003).

Even though the multi-objective optimisation can be reduced to a single-objective

problem, the solution to the calibration problem is not expected to be unique. The inability to

find a single solution and the existence of multiple solutions for a given model set-up are

major issues in the calibration of hydrological models, which have been denoted

“equifinality” by Beven and Binley (1992) and “multi-objective equivalence of parameter

sets” by Gupta et al. (1998). The first definition is given in a statistical sense and it accounts

for the probabilistic representation of parameter (model) uncertainty. The second one

considers that, due to the different ways in which the best fit of a model to the data can be

defined in a multi-objective optimisation context, the result of the calibration will be an

ensemble of optimal solutions. Under the latter perspective, the performance of the solutions

must be evaluated considering the trade-offs among the different calibration criteria. A

simple and comprehensive way of doing so is by means of the Pareto criterion (Pareto 1906),

which has been used in hydrology in several studies addressing multi-objective calibration

(Gupta et al. 1998; Yapo et al. 1998; Madsen 2003; Vrugt et al. 2003a).

The scope of this paper is to investigate the performance of two different optimisation

techniques, a global and a local methodology, in the calibration of distributed hydrological

models. The global methodology is the Shuffled Complex Evolution (SCE) algorithm

developed by Duan et al. (1992), while the local one is the gradient-based Gauss–

Marquard–Levenberg (GML) algorithm, as implemented in the PEST software by Doherty

(2005). The models considered are three physically based distributed models of different

complexity: a steady-state GW model, a transient GW model and a fully integrated model of
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the same catchment. The integrated MIKE SHE modelling system (Graham and Butts 2006)

is used to model the catchment of the Danish river Karup, a system mainly dominated by

infiltration and groundwater processes. The calibration is conducted in a multi-objective

framework where two different aspects of the model response are aggregated and

simultaneously optimised. These are the simulated runoff at the catchment outlet and the

groundwater elevation at 17 different locations (monitoring wells). Six different aggregated

objective functions are used to give different weights to the two calibration criteria. The

results of applying the two optimisation methods to the various models are compared in

terms of effectiveness and efficiency of the procedures. In this respect, the Pareto criterion is

also used as a way of discriminating among dominant (optimal) and non-dominant (sub-

optimal) solutions. We are aware that using different combinations of weights is not an

efficient method to explore the Pareto front, for which other methods are better suited

(Gupta et al. 2003), but the scope of this study is not to perform Pareto optimisation. The

main focus of this paper is on comparing the calibrated results by use of SCE and PEST in a

multi-objective framework, where the existence of multi-objective equivalence of parameter

sets is dealt with by applying the Pareto criterion. The outcome of the research enlightens us

to the different advantages and disadvantages of the two optimisation methods and the

applicability of these techniques to the different models used in this study.

Moreover, a combination of the global and local techniques is investigated as an attempt

to exploit the advantages of both methods, while overcoming their drawbacks. In this respect,

the performance of two different ways of merging the global and local methodologies is

analysed and compared. Previous trials to develop hybrid, two-stage optimisation procedures

based on merging global and local methods have already been made with RR models

(Franchini and Galeati 1997; Kuczera 1997) and with GW models (Heidari and Ranjithan

1998). Apart from these works, according to the knowledge of the authors, no attempts to

couple global and local optimisation methodologies have so far been conducted with

distributed, integrated models.

This paper is structured as follows. First, the case study, Karup catchment, is presented

together with the three different hydrological models set up for this watershed and their

respective calibration parameters. Then the two calibration techniques used in the study,

SCE and PEST, are described together with the strategy applied for their implementation.

Next follows the calibration results found by SCE and PEST for the three different models,

when different objective functions are applied. The results are analysed according to

parameter and objective function convergence. Subsequently, some preliminary results are

presented showing how the global and local optimisation techniques can be merged to

improve the efficiency and effectiveness of model calibration. Finally, a summary and an

overall discussion of the findings from this work are provided.

Case study

The catchment

The catchment considered in this study is that of the Karup River, located in the western part

of Denmark, which has been the object of previous studies by Refsgaard (1997) and Madsen

(2003). The watershed has an area of about 440 km2 and it is drained by the Karup River and

about 20 tributaries. The catchment presents a quite homogeneous geology, characterised by

sandy soils with high permeability. The aquifer is mainly unconfined and has a thickness

varying between 90m at the upstream part of the catchment and 10m in the western and

central areas. The geology of the catchment is defined by five main soil types, identified by

the Danish National Water Resources model (Henriksen et al. 2003) and shown in Table 1.

The data used in this study come from the comprehensive hydrological database available for

the Karup catchment and previously employed by Refsgaard (1997). Rainfall from nine
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stations (daily values), runoff at the river outlet (daily values), groundwater elevation data

from 17 wells (recorded every 15 d) and temperature (daily values) are used in this work.

Figure 1 shows the locations of the wells and the river outlet station in the Karup catchment.

A 6-year period of data, from 1 January 1969 to 1 January 1975, is used to set up and

calibrate the models.

Model conceptualizations and calibration parameters

The hydrological modelling software used in this study is the MIKE SHE modelling system

(Graham and Butts 2005), a spatially distributed, physically based model, which has been

used to set up a steady-state GW model, a transient GW model and a fully integrated model

of the Karup catchment. The flexibility of the MIKE SHE modelling tool allows us to easily

change the model formulation and to include in the description of the system the required

degree of complexity. The number of parameters contained in the model and potentially

subjected to calibration is huge and increases with model complexity. According to the

“principle of parsimony” (Hill 1998), the calibration problem is better posed if its

dimensionality is limited and, at the same time, the estimated parameters are sufficient to

guarantee a satisfactory model fit. Thus, only a few parameters should be chosen for

calibration. The selection of the parameters to estimate is made based on the results of a

Figure 1 Karup catchment. Location of discharge gauging station and wells

Table 1 Soil types for the saturated zone

Soil code Soil name Description

1 Melt water sand Quarternary and Post-Glacial sand and gravel

2 Clay Glacial, Inter-Glacial and Post-Glacial clay and silt

3 Quartz sand Miocene, medium to coarse grained sand and gravel

4 Mica sand Miocene, fine to medium grained sand

5 Mica clay/silt Pre-Quarternary clay and silt
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previous extensive sensitivity analysis study (Dornes 2003), which was conducted on the

three models of the Karup catchment used in this work. The parameters that were found to

have the most pronounced effect on the model response are calibrated, while the others are

fixed to their previously manually calibrated values. The conceptualisation of the steady-

state GW model, the transient GW model and the integrated model is described in the

following. Despite the conceptual differences among the models, some of the MIKE SHE

modelling blocks are common to the set-up of the three different conceptualizations.

The horizontal computational grid of all the three models is defined with a spatial scale of

1 km £ 1 km, and the geology of the saturated zone is represented with vertical and

horizontal scales of 10m and 1 km £ 1 km, respectively. Each grid element is assigned one

of the soil types specified in Table 1, identified by a given code and specific hydrogeological

parameters. A two-dimensional GW model is applied and hence one computational layer is

defined for the saturated zone by vertical weighting of the soil conductance in each

horizontal grid element. The hydraulic conductivities of two soil types, melt water sand and

quartz sand, are those with the largest impact on the model response and thus they are

subjected to calibration. A constant anisotropy between horizontal and vertical hydraulic

conductivity is assumed and only the horizontal conductivity is calibrated, Kh, while the

vertical one, Kv, is set equal to one-tenth of the respective horizontal conductivity.

Surface runoff is routed down-gradient towards the river system using the diffusive wave

approximation of the Saint Venant equations (two-dimensional Saint Venant equations). For

the steady-state and transient GW models, overland flow is only generated when the

groundwater level rises and reaches the surface level. For the integrated model, surface

runoff is generated according to evaporation and infiltration processes along the flow path.

Moreover, for the latter model, an additional contribution to overland flow is generated if

there is saturation of the first centimetres of the soil. The drainage system defined within the

catchment includes both natural and artificial drainage. The drainage flow is simulated using

a linear reservoir description, which for each cell requires a drainage level, DrnLev, and a

time constant (drainage coefficient), DrnCoef, that regulate how much and how fast water is

drained. Both of these parameters are assumed uniformly distributed in the catchment and

are subjected to calibration. The river system acts as a collector of both overland and

saturated zone flow. The river flow is routed using a Muskingum routing scheme. The

interaction between river and saturated zone is accounted for by a leakage coefficient,

LeakCoef, which is assumed to be constant for all river branches and is subject to calibration.

For the steady-state and transient GW models an empirical root zone model (Henriksen

et al. 2003) is applied to calculate the recharge to MIKE SHE. According to this method the

recharge is calculated based on observed precipitation, potential evapotranspiration, land use

information and estimates of the field capacity. The transient GW model has the same

parametrisation as the steady-state model, but the processes are modelled in transient mode.

A more detailed description of the MIKE SHE steady-state and transient GW model

formulation can be found in Sonnenborg et al. (2003). The fully integrated model includes a

conceptualization of the unsaturated zone by means of Richards’ equation. The soil moisture

retention curve (the relationship between the water content and the matric potential) and the

hydraulic conductivity function are modelled using the van Genuchten equations. Four

different soil types are identified in the unsaturated zone (loamy sand, fine sand, fine sand in

heath areas and coarse sand), each characterised by its own specific van Genuchten

parameters. The parameters of only two soil types, loamy sand and fine sand, are those that

affect the model response the most and are therefore subjected to calibration. These are the

saturated hydraulic conductivity, Ks, and the three empirical constants appearing in the van

Genuchten formulas, a, M and N, describing the soil moisture retention curve and hydraulic

conductivity function. The relationship linking two of these variables, N and M, allows
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reducing the problem dimensionality by tying the value of M to N, thus only the last

undergoes calibration. In the integrated model the actual evapotranspiration and the actual

soil moisture status in the root zone are modelled according to the empirically derived

equations developed by Kristensen and Jensen (1975), which account for the characteristics

and the distribution of the different vegetation types present in the catchment (canopy,

root distribution and vegetation density). The vegetation types present in the catchment

are classified according to the following land use and vegetation typologies: agriculture

(57%), forest (18%), heath (7%) and wetland (18%). The snow accumulation and snowmelt

processes are also accounted for in the integrated model using a simple degree–day

approach.

The parameters of each model included in the calibration are listed in Table 2. Those

assumed to depend on the calibrated values of other parameters are indicated as “tied”

parameters and the specified equations are also shown in Table 2.

Model calibration procedures

SCE and PEST optimisation algorithms

As previously mentioned, automatic calibration procedures can be grouped into local and

global strategies. It has become common practice in hydrology to employ local methods

for calibration of GW models, while global procedures are mainly used for RR models.

As for distributed, integrated models, the increased complexity of the model response

might suggest the failure of standard local calibration methods, mainly resulting in the

inability to find the global optimum and the subsequent convergence to suboptimal regions

of the parameter space. On the other side, local methods require a lower number of model

simulations, which is a great advantage considering that the computational time of a model

run of a distributed integrated model can be relatively high. The local and global techniques

compared in this study are two procedures that are frequently applied in calibration

of hydrological models. The global search methodology used is the Shuffled Complex

Evolution (SCE) algorithm developed by Duan et al. (1992) and the local method is the

Gauss–Marquardt–Levenberg (GML) non-linear regression method, as implemented in the

PEST software by Doherty (2005).

The SCE algorithm is an evolutionary-based procedure that simultaneously evolves a

population of solutions (parameter sets) towards better solutions in the search space, trying to

converge to the global optimum of the objective function. The procedure starts with a

random generation of an initial population of solutions in the feasible parameter space and

evaluation of the objective function for each individual solution. The parameter sets are then

divided into a certain number (defined by the modeller) of subgroups, called complexes,

ensuring a similar quality of the solutions inside each subgroup. The solutions in each

complex are evolved according to the simplex algorithm (Nelder and Mead 1965) in the

attempt to substitute the worst solutions with better ones. After this phase, the solutions from

the complexes are shuffled into a new population, from which new complexes are formed

(still guaranteeing for each complex a similar quality of the parameter sets) and evolved as

before. The “evolution of complexes” and “shuffling” steps are repeated until a convergence

criterion is satisfied (maximum number of model runs or minimum relative change of

parameter or objective function values between consecutives evolution steps). More details

on the SCE algorithm can be found in Duan et al. (1992). The SCE algorithm has been

extensively used in hydrology (e.g. Duan et al. 1992; Lee and Wang 1998; Hsieh and Wang

1999; Madsen 2003; Mertens et al. 2004) and, in the case of RR models, it has also been

proved to be superior to other global search techniques, such as the Multiple Start Simplex,

Genetic Algorithms and Simulated Annealing (Gan and Bitfu 1996; Cooper et al. 1997;

Kuczera 1997; Franchini et al. 1998). Some extensions to the main SCE algorithm have been
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Table 2 Parameters subject to calibration and tied parameters. Relationships between tied and calibrated parameters: (*) Kv ¼ 0.1Kh; (**) M ¼ 1 2 1/N

Models

Model blocks Parameter Range Units Steady-state Transient Integrated

Saturated zone (hydraulic conductivity) Horizontal, soil 1, Kh1 5 £ 1025 – 5 £ 1023 [m/s] Calibrated Calibrated Calibrated

Vertical, soil 1, Kv1 5 £ 1026 – 5 £ 1024 [m/s] tied* tied* tied*

Horizontal, soil 3, Kh3 1 £ 1024 – 1 £ 1022 [m/s] Calibrated Calibrated Calibrated

Vertical soil 3, Kv3 1 £ 1025 – 1 £ 1023 [m/s] tied* tied* tied*

Drainage Drainage level, DrnLev 21.3 – 28 [m] Calibrated Calibrated Calibrated

Drainage constant, DrnCoef 1 £ 1028 – 1 £ 1026 [s21] Calibrated Calibrated Calibrated

River-aquifer interaction Leakage coefficient, LeakCoef 1 £ 1028 – 1 £ 1026 [s21] Calibrated Calibrated Calibrated

Unsaturated zone (van Genuchten parameters) a, soil 1, a1 0.05–0.5 [cm21] Calibrated

M, soil 1, M1 0.6–1.67 [–] tied**

N, soil 1, N1 1.2–2.5 [–] Calibrated

Ks, soil 1, Ks1 1 £ 1026 – 1 £ 1024 [m/s] Calibrated

a, soil 2, a2 0.01–0.1 [cm21] Calibrated

M, soil 2, M2 0.6–1.67 [–] tied**

N, soil 2, N2 1.2–2.5 [–] Calibrated

Ks, soil 2, Ks2 5 £ 1025 – 5 £ 1023 [m/s] Calibrated

R.-S.Blasoneetal.4
5
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proposed. Yapo et al. (1998) expanded the procedure to multi-objective optimisation and

Vrugt et al. (2003b) modified the algorithm, incorporating an adaptive Markov chain Monte

Carlo procedure to provide estimates of parameter and model response uncertainty as part of

the optimisation. The SCE version used in this study is the one implemented in the

AUTOCAL software (DHI 2004).

The GLM method is a recursive gradient-based optimisation strategy that combines

the Gauss–Newton algorithm and the method of gradient descent to provide a solution to

the mathematical problem of minimising a sum of squared deviations between model outputs

and corresponding observations. In the basic gradient method a new parameter estimate

is found from the current set by shifting the actual parameters of a given amount along

the direction of the maximum improvement of the objective function. The Levenberg–

Marquardt variation of the method introduces a correction in the direction and length of the

parameter upgrade vector in order to avoid the search being trapped in the proximity of the

optimum without reaching it, as typically occurs when the optimum is located in elongated

valleys of the objective function (hemstitching phenomenon). The software implementing

the GMLmethod used in this study is PEST, the parameter estimation package developed by

Doherty (2005). Due to the availability of free software packages like PEST and UCODE

(Poeter and Hill 1998), local procedures for nonlinear parameter estimation have been

widely applied in the past few years in groundwater hydrology. PEST has been applied to

several hydrological studies, mainly in calibration of GW models (see, among others,

Zyvoloski et al. (2003) and Moore and Doherty (2006)), to a MIKE SHE distributed model

of the saturated zone (Islam et al. 2006), as well as to model sorption and degradation

processes of pesticides (Dubus et al. 2004). The main advantages and drawbacks of the

PEST procedure, compared to a global estimation method like SCE, are enlightened by

Skahill and Doherty (2006). PEST is particularly efficient in terms of the number of model

runs; moreover, there is the possibility to modify the procedure in cases where potential

numerical problems emerge due to parameter insensitivity as well as correlation. The main

problems of PEST are those common to most of the gradient-based methods: the possibility

of the procedure being trapped in local objective function minima as well as the dependence

of the optimisation result on the point from which the procedure is started. To overcome the

latter, Poeter and Hill (1997) recommended restarting the local search procedure many times

from different sets of starting values, in order to check whether the calibrated result is the

global solution. Based on the same idea, Skahill and Doherty (2006) have further developed

the PEST algorithm by coupling the calibration routine with a multi-start method to conduct

multiple consecutive calibration runs. This scheme is implemented in a way which ensures

the coverage of the parts of the parameter space that have not been visited by the previous

model runs. The advantage of this feature is that of preventing PEST to converge to local

objective function optima.

In this work, a multi-starting PEST calibration is conducted, with the purposes of

overcoming the problem of convergence to local optima, getting more insight into how the

starting point affects the result of the search and obtaining more than one solution for

comparison with the SCE results.

Initialisation of the procedures and termination criteria

The initialisation of the SCE algorithm requires the generation of an initial population of

parameter sets, which are then evolved according to the SCE algorithm. These points are

here used as initial points for N0 independent PEST runs. The size of the population, N0, is

determined by the algorithmic parameters of SCE. In this study three complexes are used,

with the number of points in each complex depending on the number of calibrated

parameters as recommended by Duan et al. (1994), resulting in N0 ¼ 33 for the GW models
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and N0 ¼ 69 for the integrated one. The initial population of parameter sets is generated

using the Latin Hypercube Sampling (LHS) approach (McKay et al. 1979) in order to

guarantee a good coverage of the parameter space. The number of complexes is the key

parameter of the SCE algorithm which trades-off efficiency and effectiveness. That is, more

complexes reduce the chance of converging into a local optimum but at the expense of a

larger number of model evaluations and vice versa. Preferably, sensitivity tests with different

number of complexes should have been performed before running the calibration

experiments. In particular, it is expected that more complexes are needed for the distributed

integrated model, since more parameters are included in the calibration. However, due to

computational time requirements, this investigation was not conducted and the number of

complexes was kept the same for the three models.

The result of the local search is one single solution for each independent optimisation,

thus generating a total of N0 solutions for every combination of weights (as explained

below). SCE provides a unique best solution for each specified weight combination, plus a

number of near-optimal solutions with objective function values only slightly worse than the

optimum. To compare the results with those of PEST, the best N0 SCE results are considered.

The termination criteria for the local method are convergence conditions in both objective

function and parameter space. The PEST stopping criteria are met if it is not possible to

decrease the objective function by a relative amount of 0.005 over four successive iterations,

or if the value of the parameter vector changes less than a relative amount of 0.005 over four

successive iterations. The PEST routine for temporary immobilisation of insensitive

parameters at their current value during a few iterations, while calibrating the others, is used

in the execution of the procedure. This feature does not only allow dealing with parameter

non-uniqueness, but it also conveys the advantages of preventing the search being trapped in

local optima (Skahill and Doherty 2006) and of speeding up the convergence of the

procedure. The SCE calibration process will end when a maximum number of model runs is

reached which, based on previous calibration experiments conducted on the same case

studies, is set to 700 for the GW models and 1400 for the integrated model.

Multi-objective optimisation

As previously mentioned, the calibration of the three models is conducted in a multi-

objective context, i.e. different model responses, which may be distributed in space, are

simultaneously optimised. In this work the objectives to optimise are defined in terms of

groundwater elevation heads from 17 wells and discharge data at the catchment outlet. The

fitness of the simulated model outputs versus the recorded observations is evaluated by two

objective functions. These are the sum of the mean squared errors related to groundwater

levels (m) at the 17 well locations, MSE w, and the streamflow (m3 s21) at the catchment

outlet, MSE r. The two error functions are aggregated into a single objective function, Faggr,

by weighting them as shown in Equation (1):

FaggrðuÞ ¼ wrMSErðuÞ þ ww
X17

i¼1

MSEw
i ðuÞ ð1Þ

where u is the parameter vector, and w r and w w are the weights assigned to the objective

functions of the river runoff and the groundwater levels, respectively. The weighting method

is the simplest way to direct the search of the calibration procedure towards regions of the

solution space with different performance of the two optimisation criteria. Moreover, the use

of the weights allows accounting for the different scales of magnitude of the hydrological

variables. Six different combinations of weights, chosen by a trial-and-error process, are

used for the steady-state and the transient model, while, due to the high computational time
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required, only one combination of weights is applied for the integrated model. This is chosen

as the one providing the more balanced solutions according to theMSE w andMSE r criteria.

The combinations of weights associated with the various objective functions are shown in

Table 4.

Comparison of calibration results

Parameter convergence

As described above, the number of calibration parameters varies with the model complexity.

As shown in Table 2, for the GW models 5 parameters are calibrated, and for the integrated

model 11 parameters are calibrated. In the following the relationship between the values of a

particular parameter and the objective function at the convergence stage of the search is

analysed for each model formulation and each combination of weights. Only the N0 final

points of the search are considered for PEST, while the best N0 solutions from all the

parameter sets generated by SCE are used.

The locations of the calibrated parameters versus the respective aggregated objective

function value are considered and compared. These regions are referred to as “convergence

regions” of the parameters, despite the fact that they are not strictly such for the local

procedure, for which each calibrated point is the result of an independent optimisation run.

The convergence regions are analysed because the dispersion of a calibrated parameter gives

an indication of the sensitivity of the model to that particular parameter. Tight convergence

regions (small parameter ranges for the lowest values of the objective function) are

associated with parameters that can be well determined through the calibration process,

while broad convergence regions (larger parameter ranges) are typical for parameters that

have only a minor effect on the model response (if varied alone). The latter can be the effect

of either parameter insensitivity, high parameter correlation or both. This interpretation

always holds for the results obtained from the global procedure while, in our opinion, this is

not always true in the case of PEST, as shown in the following. In fact, when the local

method is used, the presence of multiple convergence regions may indicate parameter

insensitivity, but it can also simply be an effect of the tendency of the procedure of being

trapped in local minima during the calibration iterations. This is clearly illustrated in

Figure 2, which shows the convergence regions of the parameter Kh3 of the steady-state GW

model obtained by SCE and PEST for the six objective functions used. A major difference

emerges from the plots when comparing the results obtained from PEST and SCE. SCE

normally converges to a narrow region, while the convergence points by PEST are generally

either spread all over the parameter space or localised around a few regions of attraction

(some of these being suboptimal according to the chosen calibration criterion). These

different convergence patterns of SCE and PEST in the parameter space are common for the

three models and they hold for most of the objective functions and parameters.

In the cases where a parameter calibrated by PEST converges to a unique, narrow region,

a similar behaviour for the same parameter is also obtained by SCE. Despite this, the

opposite is not true; in fact, some parameters show a narrow convergence according to SCE,

but not to PEST. Based on these results, the global method demonstrates the ability to

identify more parameters that can be well determined than the local method.

It is difficult to judge which procedure gives true information on the sensitivity of the

model to the parameters, as we are working with real case studies, affected by several error

sources. In fact, it is possible that the global method over-fits the best solution and disregards

parameter sets, which are closer to the unknown optimal solution, but suboptimal due to the

presence of errors. On the other hand, the additional solutions by PEST, which are more

spread in the parameter space, can either indicate the presence of “equifinal” solutions or
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they can be caused by the problem of the procedure to be trapped in local regions of

attraction.

A factor, which deeply affects the regions of convergence in parameter space, is the

choice of the objective function determined, in this case, by the particular combination of

weights assigned to the river discharge and to the groundwater MSE. The impact of changing

the weights appears evident in Figure 2 for the steady-state GW model (similar results are

obtained for the transient GW model). The estimate of a parameter may vary when different

criteria are chosen to calibrate the model. Moreover, the N0 final results can be more or less

spread in the parameter space, depending on the objective function, indicating that a

parameter can be well determined according to a particular combination of the calibration

criteria, while it can be non-identifiable for another combination. These variations in the

parameter convergence pattern should be expected when using various objective functions.

In fact, due to the different dependences of the runoff and the groundwater elevation heads

on the modelled processes and the associated parameters, the objective function also has a

different shape in the parameter space depending on the applied weights. No tendencies of

particular objective function combinations in generating narrower or more spread parameter

convergence are found, the results being mainly dependent on the model and the particular

parameter considered.

The model conceptualisation is also one of the factors affecting the convergence patterns

of the parameters. This is evident when comparing, for the same parameter and the same

Figure 2 Convergence points of PEST and SCE executions of the normalized value of parameter Kh3; steady-

state GW model and various objective functions used
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objective function, the convergence points of the calibration obtained for the various models.

Figure 3 shows the convergence regions of two parameters common to the three models, Kh3

and LeakCoef, when calibrated using the same objective function (objective function no. 5),

as their behaviour is representative of most of the parameters/cases. The plots in Figure 3

demonstrate that a particular parameter can converge to a different region when a different

model is used, even if the same objective function is optimised. The general tendency of the

parameter convergence intervals is that of getting narrower when the model complexity

increases from the steady-state to the transient GWmodel. This indicates that the parameters

are more identifiable when the dynamic behaviour of the GWmodel is calibrated, rather than

just the steady-state behaviour. The convergence trends obtained for the integrated model

can be compared to the results of the other models only for the parameters common to the

three model conceptualisations. The convergence intervals of some of these parameters are

also quite large (Figure 3(c)). Such poor parameter identifiability can be caused by the fact

that additional complexity and more calibration parameters are included in the integrated

model without adding new data into the estimation process.

These convergence trends are common to both optimisation methods. The SCE results are

more sensitive to the model variation, while, as mentioned earlier, the convergence points

from PEST are generally quite spread in the parameter space for all the models and objective

functions used.

Parameter correlations

The correlation among the calibrated parameters of each optimisation experiment is also

investigated to check the differences between SCE and PEST results and to check whether

there are trends when varying model complexity or objective function. The correlation

coefficients r(i,j) are calculated for each couple of parameters (ui, uj) as

Figure 3 Convergence points of PEST and SCE executions of the normalized parameters Kh3: (a), (b) and (c);

and LeakCoef: (d), (e) and (f); objective function no. 5; steady-state GW model, transient GW model and

integrated model

R
.-S

.B
laso

ne
et

al.

463



rði; jÞ ¼
cov ðui; ujÞ

sðuiÞsðujÞ
ð2Þ

where cov(ui, uj) is the covariance between the parameters ui and uj and s(ui) and s(uj) are

the standard deviations of ui and uj, respectively. All these quantities are calculated based on

the ensemble of N0 solutions found by each method. The calculated r(i,j) are global

correlation values that should not be confused with the parameter correlation at the

convergence point (as calculated as part of the GML optimisation).

Very different correlation patterns among the parameters are found for the SCE and PEST

solutions for all the models and the various objective functions used. Large differences are

seen with respect to the pairs of parameters with high correlation as well as the absolute

value and the sign of the correlation coefficients. For both GW models and the various

objective functions considered, the correlation in the parameter estimates is larger for the set

of PEST solutions than for those from SCE. Table 3 shows the correlation matrices obtained

for SCE and PEST for the transient GW model and the objective function including only the

MSE of the groundwater levels as calibration criterion (objective function no. 2). Similar

results are obtained in the other cases. In general, for the different models and objective

functions considered, few pairs of parameters have an absolute value of the correlation

coefficient above 0.75 and only very few have absolute correlation values above 0.90. For

both calibration procedures, the model with the largest correlation of estimated parameters is

the transient GW model. In the case of the integrated model, lower correlation coefficients

are found and this is true for both SCE and PEST results. Only DrnLev and DrnCoef

estimates from the SCE results have a large correlation, around 0.86, while the correlation of

the same parameters from the PEST results is 0.55. Moreover, based on our results, the

parameter correlation is found to be affected not only by the calibration procedure and the

model conceptualisation employed, but also by the objective function. This is because giving

more weight to the groundwater or to the surface water processes affects the performance of

different parts of the model and therefore it also affects the estimated values of the

parameters related to each modelling component. For example, for the PEST results, higher

correlations among the parameters is found when only the groundwater output is optimised

(objective function no. 2) and this is more evident for the steady-state GW model. Including

different kinds of data in the calibration process (recommended, among others, by Hill

(1998)) is, in this case, achieved by adding also the observed discharge in the optimisation

Table 3 Parameter correlation matrices; transient GW model; objective function no. 2

Kh1 Kh3 DrnLev DrnCoef LeakCoef

PEST

Kh1 1 0.65 0.71 20.39 20.72

Kh3 0.65 1 0.96 0.13 20.95

DrnLev 0.71 0.96 1 20.13 20.85

DrnCoef 20.39 0.13 20.13 1 20.24

LeakCoef 20.72 20.95 20.85 20.24 1

SCE

Kh1 1 20.06 0.27 20.05 20.13

Kh3 20.06 1 0.71 0.04 20.42

DrnLev 0.27 0.71 1 0.05 20.03

DrnCoef 20.05 0.04 0.05 1 0.16

LeakCoef 20.13 20.42 20.03 0.16 1
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objectives and it is found to be an effective way of reducing parameter correlation of the

PEST solutions.

The parameters of GW and distributed models have often been found to be highly

correlated, a feature which represents an obstacle for effective and efficient parameter

estimation (Poeter and Hill 1997; Kuczera 1997). High correlation coefficients (i.e. above

0.75) are rarely found in our case studies. Moreover, it seems that the degree of correlation

among the final estimates of the parameters is more the product of the estimation procedure

employed, rather than being an intrinsic feature of the particular system/model. In fact, if the

correlation structure of the parameters was an intrinsic property of the model, the same

correlation pattern should be detected by both procedures. The results found in this study by

the two procedures differ significantly in this respect. SCE provides multiple solutions with

lower correlation than the local method, thus proving that a global optimisation procedure

can better deal with the problem of high correlation of the parameter estimates. The larger

correlation found for the parameters estimated by PEST might be the effect of particular

features of the local procedure itself, rather than a property of the models. One of these is the

already mentioned problem of the procedure being attracted towards particular regions in the

objective function space.

Efficiency and effectiveness of the procedures

The calibration results have so far been considered in the parameter space. In this part the

solutions found by PEST and SCE are compared in terms of effectiveness and efficiency. The

optimal parameter set is always unknown when calibrating hydrological models on real

systems and it is never exactly known whether the calibration procedure has reached the

global optimum. In this analysis, the global minimum of the aggregated objective function of

each experiment is assumed to be the smallest value found among all the calibration runs by

SCE and PEST. In reality, due to the presence of model and data error, the location of the real

global optimum in the proximity of the best solution can only be supposed, depending on the

degree of belief of the modeller on the applied calibration procedure. In this study, all the

calibrations that have converged nearby the assumed global optimum are considered

successful. According to this characterisation of convergence, effectiveness is defined as

the probability of a calibration procedure of converging to the region close to the global

optimum, estimated as the percentage of successful calibrations out of the total of N0

provided by the two procedures.

The optimal region is defined in terms of objective function change by a maximum

deviation of 0.5% from the estimated global optimum. Efficiency is defined accordingly

as the number of model runs needed by the calibration procedure to converge, when

convergence occurs in the optimal region. For SCE, the computational cost is represented by

the interval of number of model runs required for the first and the last point of the population

to converge to the optimal region. For PEST, efficiency is given by the interval between the

minimum and the maximum number of model runs needed by a single execution to locate an

optimal solution. Table 4 summarises the results obtained by the two procedures in terms of

effectiveness and efficiency. It can be noticed that SCE is more effective for the steady-state

GWmodel and for the integrated model, while PEST is superior for the transient GWmodel.

In the case of the steady-state GW model, the effectiveness of SCE in converging to the

region where the global optimum is located is 100% for 5 out of the 6 objective functions

considered, while PEST reaches the optimal region only for objective function no. 2 where

only the well elevation heads are optimised. For the transient GWmodel, PEST always finds

optimal solutions for the considered objective functions, but the effectiveness is low, ranging

between 12.9 and 58.1%. SCE converges to the optimal region only in two cases, also with a

low convergence probability. For the integrated model 79.7% of SCE solutions converge to
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Table 4 Convergence results. Effectiveness: percentage of solutions of each procedure converging to optimal points; the asterisk indicates the procedure finding the global optimum. Efficiency:

range between the minimum and maximum number of model runs necessary by PEST and SCE to converge to the optimal region

Objective function

No. 1 2 3 4 5 6

Weights ww 1 1 0 0.06 0.24 0.03

Model w r 1 0 1 1 1 1

Steady-state GW model Effectiveness PEST 0% 93.9%* 0% 0% 0% 0%

SCE 100%* 100% 100%* 100%* 78.8%* 100%*

Efficiency PEST – 51–231 – – – –

SCE 549–700 527–699 234–356 543–700 620–700 583–699

Transient GW model Effectiveness PEST 29.0%* 58.1%* 12.9%* 38.7%* 32.3%* 19.4%*

SCE 0% 18.2% 0% 6.1% 0% 0%

Efficiency PEST 52–127 53–161 53–159 61–186 64–169 52–166

SCE – 624–668 – 643–676 – –

Integrated model Effectiveness PEST – – – – 3.6% –

SCE – – – – 79.7%* –

Efficiency PEST – – – – 187–684 –

SCE – – – – 1219–1395 –

R.-S.Blasoneetal.4
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the optimal region, while only 3.6% converge in the case of PEST, illustrating the great

difficulties of the local procedure to reach the optimal region for the most complex model.

Table 4 also shows the number of model runs necessary for the procedures to locate an

optimal solution, thus illustrating the efficiency of the procedures. The efficiency of SCE for

the GW models ranges between 234 and 700 model runs, while about twice as many model

runs are required for the integrated model, ranging between 1219 and 1395. The number of

model runs required by PEST to find optimal solutions is between 51 and 231 for the GW

models and increases to between 187 and 684 for the integrated model. The average number

of model runs required by one PEST execution to converge to an optimal solution is lower

than that needed by SCE. On the other hand, it must be noticed that the overall number of

model runs required by the local method to find the solutions of these experiments is much

larger compared to that of SCE, as it includes also the unsuccessful iterations of the N0 trials

(see also Table 5). Therefore, the advantages of the fast objective function reduction of

PEST are depleted by the necessity of starting the procedure at several points to overcome

suboptimal convergence. As a result of this, we can say that, considering the trade-off

between effectiveness and efficiency, the global method generally performs better than the

local one.

Figure 4 illustrates the convergence of the aggregated objective function for the

three models. These plots are shown for objective function no. 5, but they represent features

common also to the other functions. The results are shown for all the N0 optimisation

experiments by PEST and for the evolution of the best-so-far results from the SCE

population of solutions. As can be seen in the plots, the objective function is generally

lowered to reasonable values pretty fast by PEST, while SCE needs a higher number of runs

to reach similar results. Only for the steady-state GWmodel the objective function reduction

is much faster for SCE than for PEST. For the GW models some PEST executions end up in

points that are suboptimal according to the chosen calibration criterion. In the case of the

steady-state GW model, convergence occurs in two suboptimal regions (Figure 4(a)).

Similarly, three main regions of attraction of the aggregated objective function can be

identified for the transient GW model, two of which are suboptimal (Figure 4(b)). Although

for this model PEST is the most effective procedure, its probability of failure is quite high, as

previously illustrated in Table 4. For the integrated model the PEST final solutions are not

sensitive to particular regions of attraction, as they are more spread in the objective function

space compared to the previous cases (Figure 4(c)): however, only two results out of N0 ¼ 69

converge to the optimal region.

The effectiveness of the search algorithms can also be assessed in a multi-objective

perspective, i.e. by evaluating the calibration results according to both the discharge and

the groundwater head observations. The trade-off between calibration objectives can be

described by representing the results from all the evaluations made by each search procedure

Table 5 Total number of solutions contained in the estimated Pareto sets and total number of model runs

conducted for each model by PEST and SCE

Model Procedure Pareto solutions Total no. of model runs

Steady-state GW model PEST 31 19,636

SCE 541 4200

Transient GW model PEST 104 18,788

SCE 187 4145

Integrated model PEST 15 27,374

SCE 19 1400
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in the objective function space and determining the best solutions according to the Pareto

criterion. The optimal Pareto solutions, which are equally good according to the optimisation

criteria, are located along a front called the Pareto front. In this way, the trade-off between

the optimised objectives is reflected in the multiple solutions of the estimation problem.

Moreover, considering the two calibration criteria instead of the aggregated objective function

also allows a comparison of the results obtained by applying different aggregation weights to

the objective functions,MSE w andMSE r. The two estimates of the Pareto front obtained by

SCE and PEST for each model are shown in Figure 5. These fronts are generated by

combining the solutions found for the six different objective functions for the GW models,

whereas only one combination of objective functions is available for the integrated model.

Figure 4 Objective function convergence plots of PEST and SCE calibrations; objective function no.5; (a)

steady-state GW model, (b) transient GW model and (c) integrated model
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The number of Pareto optimal solutions is reported in Table 5, together with the total number

of model runs required by SCE and PEST for each model. Table 5 illustrates the big gap

between SCE and PEST results when the number of solutions located along the Pareto front is

compared to the number of total model runs required by the two procedures. This trend can be

noticed for all the models. As previously illustrated, PEST is more efficient for a single

optimisation run, even if convergence to the global optimum is not guaranteed. When

considering Pareto optimality, i.e. the ability of locating solutions belonging to the Pareto

front, SCE is both more efficient and effective. In fact, for all the models a lower number of

model runs is sufficient for SCE to locate more solutions belonging to the Pareto front. SCE is

also more effective in exploring the trade-offs between the two objectives because more

variability is present in the solutions from the global method. The effect of this feature is also

evident in Figure 5: the Pareto fronts estimated by SCE are generally more extended than

those from PEST results. The main reason why fewer PEST solutions belong to the fronts is

due to the sensitivity of the local procedure to particular regions of attraction of the objective

function, as already mentioned and illustrated in Figure 4. This results in an incomplete

estimation of the Pareto fronts, leaving some areas uncovered where SCE is able to locate

solutions, as is particularly evident in Figures 5(a) and (b). Despite all the drawbacks of the

local optimisation method, it can be noticed for the transient GW model (Figure 5(b)) that

PEST can locate in some cases better balanced solutions than SCE, i.e. solutions which are

good according to both the optimisation criteria employed.

Merging SCE and PEST

From the results of the previous analysis, it is seen that both the SCE and the GML algorithms

have specific advantages in calibrating hydrologicalmodels. In particular, PEST ensures a fast

reduction of the objective function, but convergence to the global optimum is not guaranteed.

On the other hand, SCE is capable of globally searching the solution space and of exploring a

larger variety of solutions, when trade-offs between optimised objectives are present, without

the problem of being trapped in local optima. However, a full SCE execution needs more

model runs than a single PEST calibration. Therefore, the potential of combining the SCE and

PEST procedures to develop a more efficient and effective methodology is also explored in

this work. In this respect, two attempts at merging SCE and PEST are made. The first one,

similarly to what was done by Kuczera (1997), consists in fine-tuning the SCE estimate of the

parameters bymeans of a single PEST run. The second approach is based on the awareness that

the results of the GML method are strongly dependent on the starting point of the search and

that multiple PEST runs started from different points enhance the chance to converge to the

optimal region. Therefore, in the second trial, several PEST runs are launched from a given

SCE population at an initial convergence stage.

In the first attempt of hybrid optimisation a PEST execution is started from the best point

found by one SCE optimisation. This result is compared to that of a new SCE calibration, run

with a larger population size (i.e. with the number of complexes increased from 3 to 5) to

decrease the probability of converging into a suboptimal region. This study is conducted

using the transient GW model, as it has an average degree of complexity among those used

and, at the same time, it is not too expensive to run. Moreover, as the solutions previously

found by SCE for this model are not as good as those by PEST, it is also tested whether better

results can be found by tuning some of the SCE algorithmic parameters. The objective

function no. 5 is the one chosen for the test, as it provides more balanced solutions according

to the two optimisation criteria.

The results of the combined methods and of the enhanced SCE execution are compared in

terms of efficiency and effectiveness. Figure 6 shows the estimates of the Pareto front

obtained by running SCE with 3 and 5 complexes and the refinement of the SCE solution
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found by starting PEST from the best solution found by SCE with a lower number of

complexes. As can be noticed in the figure, the Pareto front of the SCE execution with 5

complexes dominates the front found by running SCE with 3 complexes. This indicates that

the results found by the global procedure in the previous calibration experiments can be

further improved, if the SCE procedure is adequately tuned. This also explains the poorer

performance of SCE than PEST for the transient GWmodel. The best solution by SCE with 5

complexes can be compared to the one resulting by coupling SCE with PEST. As for the

effectiveness of the two approaches, by coupling the global and local methods the aggregated

objective function is reduced from the initial value of 1.542 to 1.531, while SCE with 5

complexes reaches 1.535. A further reduction of the objective function by SCE up to

the estimate refined by PEST might be possible, but at the cost of an increased number

of complexes and, thus, at an increased computational cost. As for the efficiency of the

Figure 5 Pareto fronts found by PEST and SCE; (a) steady-state GW model, (b) transient GW model and (c)

integrated model (results only for objective function no. 5)
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two approaches, coupling the global and local procedures requires a total of 751 model

runs (668 by SCE plus 47 by PEST), against the 1059 required by running SCE with

5 complexes. Therefore, the hybrid approach is more efficient for a fixed trade-off

between objectives. If more variety of solutions is of interest, running the global method

with a larger population size can provide additional solutions at a slightly increased

computational cost.

In the second experiment a SCE calibration is initially run and PEST is subsequently

launched from different points from the SCE optimisation. Following this approach, PEST is

still used as a fine-tuning procedure, but in this case the local method is started at an initial

convergence stage of SCE and from more than one point. The steady-state GW model

is chosen to demonstrate this method and to further investigate the poor performance

demonstrated by PEST for this model. In fact, by launching PEST from new points, it is also

tested whether the bad performance of the local method on the simpler model is caused by

the particular initial LHS selection of the N0 starting points of the search. As in the previous

experiment, objective function no. 5 is used in this hybrid-optimisation approach. Six points

from the SCE results within the first 150 runs are selected as points from where to start the

PEST executions.

The results of this experiment are shown in Figure 7, which illustrates the convergence

pattern of the aggregated function optimised by SCE, together with the refinements by PEST

started at different points. As for the effectiveness of this method, Figure 7 clearly illustrates

that the convergence of the local method to suboptimal solutions cannot be avoided (similar

results were found by Heidari and Ranjithan (1998)). This confirms the previous results:

PEST still has convergence problems for the steady-state model, demonstrated, also in this

case, by the very low probability of convergence to the global optimum. Only one of the 6

PEST calibration runs reaches a value of the aggregated objective function (1.66), which is

contained in the optimal region and which is also lower than the optimum obtained by the

SCE calibration (1.67).

We must point out that we cannot directly compare the calibration results of applying

these two different combined methods, as they have been obtained using different models.

However, it seems that the first approach is the more effective of the two, since it allows a

reduction of the objective function, which would have been impossible (or obtainable with a

very low probability) by using PEST and achievable at a very high computational cost by

SCE. Starting PEST at the optimal point found by SCE will significantly reduce the risk of

the local procedure being trapped in suboptimal regions of attraction, while this drawback

Figure 6 Improvement of SCE results. Pareto fronts estimated by running SCE with 3 and 5 complexes and

result of a PEST execution started from the best solution by SCE with 3 complexes. Transient GW model,

objective function no. 5
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is still present when PEST is started from initial points of the SCE convergence. As for

the computational time, the first method requires a total number of model simulations

comparable to that required by the global method. Instead, the second approach, similarly to

the application of the pure local procedure, ensures a quick reduction of the objective

function for a single PEST execution, but more executions have to be run, since convergence

to the region where the global optimum is located is not guaranteed. Moreover, both

approaches demonstrate that, when PEST is started from SCE suboptimal points, a further

refinement of the solution is always found by the local procedure. As calibration of real case

studies is conducted on a response surface with an unknown optimum value, the criteria to

terminate the search must be fixed a priori by the modeller on a relative change of the

parameters or the objective function value. Starting a local procedure as PEST from the

optimal solution obtained by a global optimisation method can be used as a cheap test to

verify if the global method has converged to the global optimum or if a further improvement

of the results is still possible.

We are aware that these are only preliminary results of merging the global and local

calibration procedure, but some conclusions can be drawn from these findings and used to

address the future research in this field.

Discussion and conclusion

This paper compares the results obtained by applying two different automatic calibration

algorithms to hydrological models of different complexity. The methodologies used are the

SCE global calibration procedure and the PEST local optimisation method. The hydrological

models are three distributed physically based models: a steady-state and a transient GW

model and an integrated model applied to a Danish catchment. Two optimisation criteria,

defined from measurements of the river discharge and the groundwater elevations, are

included in the calibration process by means of six different aggregated objective functions.

The efficiency and effectiveness of the two procedures are compared in terms of objective

function reduction and parameter estimates.

The main finding about parameter estimates is that SCE identifies more well-determined

parameters than PEST. It is also found that the specific objective function used affects the

results of the two procedures, mainly in terms of parameter identifiability, while the model

formulation has an effect on the parameter estimates, in particular by shifting their

calibrated values. The SCE results are more sensitive to these variations, while the PEST

solutions are generally quite spread in the parameter space for all the case studies

considered. The correlation among the parameters is low for all the cases considered, in

Figure 7 Convergence of SCE and refinements by PEST starting at different points from the SCE search.

Steady-state GW model, objective function no. 5
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particular for the objective functions that include both types of measurements. Different

correlation patterns among the parameters are found by the two procedures in terms of pairs

of parameters with a significant correlation and correlation coefficient values. In all the

cases, PEST provides higher correlated parameter estimates than SCE. We do not know

which calibration method gives more realistic results for our case studies. We can only

acknowledge the facts that different conclusions about parameter sensitivity, identifiability

and correlation can be drawn based on applying different calibration procedures and that

parameter estimates are more identifiable when a global calibration method is applied than a

local one. This can be the effect of SCE over-fitting the best solutions and PEST being

trapped in suboptimal regions of attraction far from the optimum. These findings reveal

that parameter identifiability and correlation, as well as model sensitivity to the parameters,

cannot be objectively evaluated based on a calibrated set of results, as they are deeply

affected by the calibration method employed. Therefore care must be taken in judging

these properties of the system/model based on the solutions obtained by an optimisation

procedure.

It is difficult to make a general conclusion of the two procedures with respect to

effectiveness and efficiency, as the performance of the two methods varies with the models

used. The results by PEST are deteriorated by the frequent convergence to suboptimal

regions of attraction in the objective function space. In fact, despite PEST is more effective

than SCE in the case of the transient GW model, the probability of a single optimisation

run to converge to the optimum is quite low for almost all the cases. In particular, it is 0%

for 5 out of 6 cases for the steady-state GW model, the kind of model for which local

optimisation techniques have been extensively applied. For SCE the effectiveness is 100%

for 5 out of 6 cases for the steady-state GW model and large also in other cases except for

the transient GW model. Even that the average number of model runs required by a single

PEST execution to locate an optimal solution is lower than that needed by SCE, the low

probability of PEST to converge to the optimal region makes multiple runs from different

starting points necessary, thus decreasing the computational advantages of the local

method. Therefore, considering the trade-off between effectiveness (as probability of

converging to the optimal region) and efficiency (as total number of model simulations to

run), we believe that the global method is preferable to the local method.

If the solutions are evaluated in the multi-objective space using the Pareto optimality

criterion, SCE is both more effective and efficient in exploring the trade-offs between the

two objectives. Compared to PEST, SCE can identify more solutions along the Pareto front,

by requiring a lower total number of model runs. PEST fails to provide a complete estimate

of the front, but in some cases it locates better balanced solutions than SCE, according to the

two optimisation criteria.

It is also demonstrated that using PEST to refine the SCE optimum parameter estimates is

a promising way of merging the global and local methods. This procedure ensures a

relatively fast convergence to the global optimum from an advanced stage of the SCE

optimisation, overcoming the high probability of suboptimal convergence of PEST. In this

respect the local procedure is also suitable to verify if the results of a global method have

converged to the global optimum or if an improvement of the parameter estimates can still be

achieved.

It should be emphasised, as is the case with any model application to real world

problems, that the formulation and set-up of the model used for testing the two optimisation

algorithms are based on specific choices regarding model perameterization, selection of

calibration parameters and calibration data, and definition of objective functions. All these

choices will have an impact on the calibration. For instance, the convergence problems we

observe for the PEST algorithm may be caused by model structural deficiencies, e.g. that the
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applied 2D model for the saturated zone is too simple to represent the groundwater flow in

the catchment. In addition, especially in relation to calibration of the steady-state GW

model, the use of only 17 observation wells may not be sufficient to properly constrain the

parameter estimation, resulting in an ill- or poorly-posed optimisation problem. It may be

speculated that different results would be obtained if another perameterization of the

saturated zone was applied and more data were used in the calibration, and hence one may

question the generality of our results. However, we think that the model perameterization

and choice of calibration data used in this study reflect a typical real world model

application. The results demonstrate strengths and weaknesses of the two parameter

estimation algorithms, which are essential to acknowledge when applied to hydrological

model calibration.
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